• korea
  • search
  • login


  • Internet of things and system software

    [Prof. Dae Young Kim] The term Internet of Things was firstly introduced in 1999 by Kevin Ashton at the Auto-ID Labs, MIT, which is the primary research partner of GS1. GS1 is a global organization which provides various types of codes such as bar code, RFID code, QR code for thing identification, and also standardizing system infrastructure for global business and application. Among seven Auto-ID Labs (MIT, Cambridge, ETH Zurich, Keio, Fudan, Adelaide, KAIST) over the world, Auto-ID Lab, KAIST have studied in IoT field since 2002, with the RFID and wireless sensor network technology. And since 2005, we started to develop various IoT technologies that are specialized to GS1 standard. We are currently working on following projects; Oliot (GS1 based IoT Infrastructure Platform), SNAIL (6LoWPAN based IoT Connectivity Platform), SeaHaven (Visual Sensor Network Cloud Platform), IoT-App Ecosystem (Ecosystem for Mobile Versatile Applications), GPGPU HPC Cloud (Cloud Computing for HPC with GPGPU). [Research Results] The IoT is the vision that aims to give every day object virtual personality. The rationale behind this is to let them have global identification, computation and communication capabilities. That is, our everyday things become intelligent and are able to provide us with any information about themselves. As a result, vast opportunities to create entirely new dimension of services appear. In this regard, we have developed the following five technologies to realize the IoT vision. (1) SNAIL: We enabled communication among things over Internet to achieve 6LoWPAN IoT network. SNAIL (Sensor Network for an All-IP World) is a solution for IoT network, which is a tiny IPv6-based sensor networking platform including a complete architecture of a lightweight TCP/IP stack supporting IPv6 adaptation, ad-hoc routing, header compression, and bootstrapping as well as four important technologies, mobility, web enablement, time synchronization, and security. (2) Oliot: Oliot is aiming an international standard based IoT Infrastructure Platform, by extending the code system of GS1 and their standard architecture to support various IoT connectivity and protocols such as bar code, RFID, ZigBee, 6LoWPAN, etc. Oliot also aims a complete implementation of GS1/EPCglobal standard. (3) IoT-App Ecosystem: IoT-App Ecosystem is a new ecosystem for mobile software, which enables easier interaction between mobile application and various smart things. This is currently being implemented for Android and supports current Android development environment. (4) SeaHaven: SeaHaven is a portable and secure multi-tenant visual sensor networks cloud platform which covers visual sensor node operating systems, visual sensor streaming service, visual big data processing service, and user applications. The major goal of this project is to make the machine understand the context of the scene by leveraging visual sensors all over the world which are very beyond human’ visual sensory. (5) GPGPU HPC Cloud: This project is about Cloud computing for HPC with general purpose graphical processing unit (GPGPU). Using GPGPU on Cloud will reduce cost and power usage than using only CPUs. We implemented platform with OpenStack, KVM, and API forwarding technique. [Excellency and Expected effects] (1) SNAIL: We make an effort to support secure, dynamic, global, and easy access to everyday objects using IPv6 address. Our IoT platform SNAIL is evaluated as a promising IoT platform and new version SNAIL 2.0 will come out soon. (2) Oliot: The entire source code was opened to public and is designated to be utilized on various project such as EU IoT6 Smart Building Project, KAIST Dr. M Project, c-ITRC Food Safety System, Stanford Civil Engineering Project, Korea University Hospital Project, and Smart Consumer Electronics. The roadmap and vision of Oliot project is described in oliot.org. (3) IoT-App Ecosystem: With this work, mobile application developers can more easily implement applications which interacts with pervasive smart things. Also, it aids the developers to publish their business logic to customers. (4) SeaHaven: To make the machine understand the context of an event is a quite challenging job to handle. Variety and sparse distribution of sensors must be the most helping key in resolving this issue. SeaHaven provides a universal interface for sensors to cover variety and heterogeneity of sensor devices and a very scalable service architecture to easily scale out the system over the cloud infrastructure. (5) GPGPU HPC Cloud: To use GPGPU on Cloud, previous approach only supports one to one mapping virtual machine and GPGPU. With API forwarding technique and Kepler architecture GPGPU, our platform supports scalable use of GPUs. And with efficient GPU resource scheduling algorithms, our platform can maximize resource utilization while providing SLA for HPC users.

    ...Read more
  • Investigating Reliable Computing Systems in Nano-s..

    [Prof. Soontae Kim] With technology scaling, feature sizes, and supply and sub-threshold voltages are decreasing for high performance, high transistor density, and low power consumption. At the same time, microprocessors and memory systems are integrating more transistors to extract more performance. Unfortunately, these trends make computing systems more susceptible to various errors. Transient errors occur when energetic neutrons coming from deep space and alpha particles from packaging materials hit transistors, which change the state of memory bits or the output of combinational logic temporarily. In addition, permanent errors due to process variations and wear-out in interconnect and transistors increase over time, which in turn decrease yield and lifetime of the computing systems. Therefore, it is essential to provide reliable computing on top of unreliable systems for the continued success of computing. We investigate low-cost processor architectures, memory systems and software to combat against those various errors in nano-scale era. [Research Highlight] Access-time Variation Insensitive Level-1 Caches [1] Ever-scaling process technology increases variations in transistors. The process variations cause large fluctuations in the access times of SRAM cells. Caches made of those SRAM cells cannot be accessed within the target clock cycle time, which reduces yield of processors. To combat these access time failures in caches, many schemes have been proposed, which are, however, limited in their coverage and do not scale well at high failure rates. We proposed a new level-1 cache architecture (AVICA) employing asymmetric pipelining and pseudo multi-banking. Asymmetric pipelining eliminates all access time failures in L1 caches. Pseudo multi-banking minimizes the performance impact of asymmetric pipelining. For further performance improvement, architectural techniques were proposed. [Reference] 1. Seokin Hong and Soontae Kim. AVICA: An Access-time Variation Insensitive L1 Cache Architecture. Design Automation and Test in Europe Conference (DATE’13), March 18∼22, 2013, Grenoble, France (Best Paper Award).

    ...Read more
  • OncoSearch: A web tool that searches biomedical li..

    [Prof. Jong Cheol Park] OncoSearch (http://oncosearch.biopathway.org) is a web tool that allows the user to query into biomedical literature for information on cancer-related genes and shows the results for further insights into oncogenesis, with an aim to catalyze and accelerate the ongoing cancer research. [Article] Automatic identification of gene-cancer relations from a very large volume of biomedical text is an important task for cancer research since changes in genes are known to be the main cause of oncogenesis and a huge amount of information on such genes is archived in biomedical literature databases. To identify such relations, it is essential to understand, as much as possible, how a gene affects a cancer and to distinguish oncogenes (genes that cause cancers), tumor suppressor genes (genes that protect cells from cancers), and biomarkers (genes that indicate normal or cancerous states) since this will speed up the development of treatment and diagnosis methods for cancer. Although genes may sometimes be explicitly claimed as oncogenes or tumor suppressor genes in the biomedical text, it is more often the case that information on gene-cancer relations is conveyed only implicitly with detailed descriptions about gene and cancer properties. Consider the example of the sentence below. WWOX overexpression induced apoptosis and suppressed prostate cancer growth in vitro and in vivo [PMID:17704139]. While the gene WWOX is a well-known tumor suppressor, the sentence above does not contain an explicit reference to the gene as such. Instead, the sentence gives information that helps to classify the gene WWOX as a tumor suppressor of prostate cancer through the following inference: 1) WWOX expression level is increased, 2) prostate cancer regresses when WWOX expression increases, and 3) there is causality between the change in WWOX and the change in prostate cancer. By combining the three pieces of information above, one may classify the gene WWOX as a tumor suppressor gene. Although a single sentence with such implicit information may not provide enough evidence to confirm a particular gene's class, collecting a large amount of such information in the literature would certainly help to substantiate such a conclusion. Prof. Jong C. Park’s research team at KAIST developed OncoSearch, a web tool that allows the user to query into the biomedical literature for free-text information on cancer-related genes and provides the results for further insights into oncogenesis, or the process by which normal cells are transformed into cancer cells. In particular, OncoSearch can classify genes into either oncogenes, tumor suppressor genes, or biomarkers by taking into account implicit information as well as explicit information on their roles. The tool characterizes gene-cancer relations described in biomedical text with 1) how a gene changes, 2) how a cancer changes, and 3) the causality between the gene and the cancer, and the tool infers the respective roles of genes in cancers. Through this classification, the research team showed that the tool can correctly pick out oncogenes and tumor suppressor genes already registered as such in biology databases. The research team also showed that only small portions, or 6.87% and 3.76%, respectively, of the oncogenes and tumor suppressor genes in one of the de facto standard gene databases, or UniProtKB, are registered in the list of oncogenes and tumor suppressor genes published by Vogelstein and colleagues (Science, 2013). This indicates either 1) that the process of identifying new oncogenes or tumor suppressor genes is still at an early stage or 2) that the exact definitions of oncogene and tumor suppressor gene are highly dependent upon each biology database. OncoSearch is, thus, expected to catalyze much further research in oncology since the tool can collect and infer information about novel oncogenes, tumor suppressor genes, and biomarkers from the rapidly growing body of the literature that does not necessarily contain explicit expressions such as oncogene and tumor suppressor gene.

    ...Read more
  • High-physicality touch interfaces

    [Prof. Geehyuk Lee] Touch interfaces are now a de facto standard for information appliances. They enabled more direct and natural interaction than traditional computer interfaces, but are still in their early stage as the types of operations are quite limited compared with diverse surface operations that we perform in the real world. The limitations of the current touch interfaces stem mainly from their inability to discriminate touches of different degrees, for example, hover, light touch and heavy touch. We are interested in new possibilities that may be enabled when touch surfaces become more physically sensitive, for instance, when they can sense the approach or the pressure of the fingers as well as their touch. We are conducting a series of interaction design studies with high-fidelity prototyping, and are publishing some of early results in leading HCI conferences. Research Results Touch with Hover We developed a world-best class optical hover tracking touchpad technology and are exploring the potential of using it. Using this technology, we can provide a touch-screen-like interaction in the TV environment. For instance, the shadow of the user's fingers touches the screen, presses a button, and flicks a cover-flow-like list, while the fingers stay and move on a touchpad. In order to explore this concept, we developed a hover-tracking optical touchpad, and designed a TV application to demonstrate possible new interaction techniques. Through a prototyping study, we could correct some of our false expectations, and verify its potential as a viable option for a TV remote interface. (left) RemoteTouch concept and device, (right) Hover-tracking long touchpad Touch with Force The same finger movement on an object may be associated with different intentions depending on its normal and tangential forces. For instance, the same finger movement can be intended to turn a single page or to turn multiple pages, or to slide on a page, but a touch screen cannot differentiate these gestures. We solved this problem with a touch screen that can sense not only touch positions but also touch forces. We implemented a prototype device that can sense the normal and the tangential component of the forces on the screen, designed Force Gestures, which differ in terms of both touch movements and force patterns, and conducted an experiment to verify the feasibility of this approach. (left) example force gestures, (right) example multi-point tangential force interaction Excellency and Expected effects A complete report of our research on the RemoteTouch concept was presented at ACM CHI 2011 [C1]. The CHI paper soon attracted the attention of technology reporters and a news article about the paper appeared in DiscoveryNews [W1] and MSNBC.com [W2]. The optical hover-tracking technology was also implemented into form factors of a standard laptop touchpad and long shaped palm rest-length touchpad, and presented at ACM UIST 2011 [C2] and ACM CHI 2013 [C3], as a demo and a poster, respectively. The long touchpad was also introduced by American technology blogs, NewScientist Blog [W3] and Gizmodo [W4]. Regarding Force-sensing touch technology, a complete report is presented at ACM UIST 2011 [C4] and ACM CHI 2013 [C5], which is one of the most competitive venues for UI researchers. Published at ACM CHI and ACM UIST, the results of the current research were verified to be original and academically important. The research is also expected to have an impact on ICT industry since their main application targets are smart phones and smart TVs. After the introduction of iPhone, mobile phone manufacturers realized the importance of UI technologies and are experimenting with many new UI technologies to impress the market. High physicality touch screen or touchpad as demonstrated by our research results is certainly one of them. We were invited to present our research on touch interfaces by major companies such as LG and Samsung this year. We could also attract research funds from an industry source [F1] and a government source [F2] for the current research. The aforementioned news articles [W1, W2, W3] also reflect the public interests in the current research. References C1. Sangwon Choi, Jaehyun Han, Geehyuk Lee, Narae Lee, and Woohun Lee, RemoteTouch: Touch-Screen-like Interaction in the TV Viewing Environment, CHI 2011 (paper). C2. Sangwon Choi, Jaehyun Han, Sunjun Kim, Seongkook Heo, and Geehyuk Lee, ThickPad: A Hover-Tracking Touchpad for a Laptop, ACM UIST 2011 (demo). C3. Jiseong Gu, Seongkook Heo, Jaehyun Han, Sunjun Kim, and Geehyuk Lee, LongPad: a touchpad using the entire area below the keyboard of a laptop computer, ACM CHI 2013 (paper) C4. Seongkook Heo and Geehyuk Lee, Force gestures: augmenting touch screen gestures with normal and tangential forces, ACM UIST 2011 (paper). C5. Seongkook Heo and Geehyuk Lee, Indirect shear force estimation for multi-point shear force operations, ACM CHI 2013 (paper) W1. http://news.discovery.com/tech/shadow-remote- touchscreen-110519.html W2. http://www.msnbc.msn.com/id/43095028 W3. http://www.newscientist.com/blogs/onepercent/2013/01/trackpad-ignores-accidental-to.html?cmpid=RSS%7CNSNS%7C2012-GLOBAL%7Conline-news W4. http://gizmodo.com/5982160/intelligent-keyboard-wide-touchpad-is-smart-enough-to-ignore-your-palms Funding Sources 1. Implementation of USN Sensor Platform and Network Systems, Funded by National Research Laboratory (NRL) Program of NRF, 2007-current 2. u-Agriculture, Funded by ITRC (Information Technology Research Center) Program of MKE, 2007-current

    ...Read more
  • Jaepil Huh, Student Spotlight

    1) How did you get to join the Computer Science (CS) department? My high school friends who graduated before me significantly influenced my decision to join the CS department. I graduated from a science high school, where the curriculum was much focused on subjects such as math, chemistry, physics, biology, astronomy, and CS. I personally found CS to be most attractive, because it allowed me to study at a more flexible pace and use the computer during studying hours. Whenever I got lost in my studies, my upperclassmen friends were there to help me get back on the right track. I was especially lucky to meet one friend, who took the time to pass on his knowledge of fundamental algorithms and problem solving skills. I cannot forget the joy of learning CS concepts from my friends in the winter of 2013, a year from which I chose to join the CS department. 2) What was your academic path like up until joining the CS department? I graduated from Gyeongnam Science High School in 2 years and entered KAIST in 2004. After graduating with a B.S. in CS, I entered the Master’s program in 2008, and then the Ph.D. program in 2010. I am currently studying under the advisement of Professor Sungeui Yoon. 3) What was your childhood dream? What are you doing now to achieve that dream? Most children would name a job title when asked what their dream is, but I was different. My childhood dream was to do work which allows as many people as possible to make a living. In retrospect, that dream sounds thoughtful and embarrassing at the same time. I cannot exactly tell you what I am doing not for that dream, but I should work harder to get closer to making it come true. 4) What are your strengths? I laugh easily. Though, I should probably tell you something that is related to my CS skills: I believe I am good at thinking outside of the box when approaching a given problem. Of course, any idea that comes from outside of the box needs to be validated and is often proven wrong, but a really great idea comes by from time to time. 5) What are you passionately working on in the field of CS these days? I am currently studying image search, which is about searching an image database for images similar to a given image. More specifically, I am focused on scalable searching techniques which can deal with big database. I am passionate about developing, implementing, and evaluating a more accurate and faster method of image search and presenting it at a top conference. 6) What values and future prospects do you see in your current work? Currently, most of the online search is based on text, but image searching is expected to gain more attention in the future. The trend is evident in the rapidly increasing number of images in SNS and the Internet, which is made possible by the easy access to images from mobile devices. My current research topic of big data image search is an important issue in this trend, so I am working hard to make contributions. 7) What were your happiest and most disappointing moments, respectively, in the CS department? My happiest moment was when my first paper in the image search area got accepted at the most renowned conference in the field. It was all the more meaningful, because that was a time when I was feeling unsure about myself, after just having changed my research topic upon becoming a Ph.D. student. The most disappointing moment was when I found out that a research paper was published on the very topic that I had been working on myself. I was disheartened to find that the contents of the paper, from diagrams to experimental results, were almost exactly the same as mine. I later learned that this sort of event happens often in CS, a field where things progress rapidly. All in all, this is a life of a graduate student whose mood depends on how well the research is going and published. 8) What do you think is the best thing about studying CS? The field of CS is fast, and that is what I find to be the most attractive about studying it. I always have to stay alert to the rapidly changing trend in order not to get behind. I believe I have the energy to keep up with this field, which also plays very important roles across various domains. What’s more, the validation process of new ideas is also very fast in this field. Paper submission, reviews, and rebuttals happen regularly according to the schedule. I like this academically fast and interactive culture in the field of CS. 9) What would you like to say to those interested in joining the CS department? Although I do not believe I am at a position to give such advice, I will just say a few personal thoughts on it. As I mentioned above, because CS knowledge evolves fast, what we need is an ability to learn and adapt to new things rather than acquiring bits of knowledge. If you could also have critical thinking and creativity on top of that, it would be great. 10) What are your future plans? I would first like to express gratitude for this opportunity to participate in the interview. My foremost goal is to earn my Ph.D. degree. I did not decide on specific plans after that, but I am open to continuing my current research and working in the industry.

    ...Read more
  • Gyeongyeop Lee, MSc. Student Spotlight

    1) How did you get to join the Computer Science (CS) department? I joined the CS department in Fall 2012 as a graduate student. 2) What was your academic path like up until joining the CS department? I majored in electrical engineering and minored in management science at KAIST. 3) What was your childhood dream? What are you doing now to achieve that dream? When I was in high school, my dream was to become a math teacher. I eventually chose to major in electrical engineering, because I wanted to work with mobile phones. It sounds abstract, but I have always wanted to do something that directly influences people in a close manner. While keeping that in mind, I worked on developing an English education product for smartphones at a small company named Today’s Word. My job as a project manager at that company involved some programming, which I personally enjoyed a lot. Ultimately, I realized that smartphones are products with strong influence on people’s lives, and I decided to study CS with an aim to maximize the positive side of that influence. 4) What are your strengths? I love working with kids. There are three ways in which I am still like a kid. First, I am never calculating when I interact with people. Also, I do not worry about things too much, because I have faith that God is always looking out for me in my life. Lastly, there are so many things that I do not know about yet, so I am open to learning new things. 5) What are you passionately working on in the field of CS these days? I am currently working in the IR&NLP lab and my research involves human languages in the form of text data. More specifically, my research is about searching for bias or falsifications in documents, such as online fake reviews. I have done research which applied past research results from psychology to develop a computer science algorithm. I am working to extend that research, and it is definitely an interesting research experience. 6) What values and future prospects do you see in your current work? Online reviews are known to heavily influence how people make their purchases. Fake reviews can lead to unfair online transactions which result hurt the customers as well as sellers. Therefore, I believe identifying fake reviews can contribute to the online community by providing a better experience for online shoppers and sellers. In this way, my research dealing with natural language can have positive effects on people in practical ways. 7) What were your happiest and most disappointing moments, respectively, in the CS department? I enjoy the moments which I am inspired by new ideas for research. Of course, the ideas may get rejected in the end, but I enjoy the whole process of exploring them with my advisor and lab members. I feel more excited when my ideas appear to be clever and actually get implemented to show promising effects. I remember that my first year as a graduate student had some disappointing moments, when I felt that my CS knowledge was not strong enough due to my background as an EE major. 8) What do you think is the best thing about studying CS? In my field of study, it is possible to implement new ideas and evaluate them with empirical studies without hardware constraints. I feel lucky to be researching in CS, whenever I hear that experiments take months to do in other departments. Studying CS strengthens problem-solving skills, as we search for better efficiency or effectiveness in our solution. Moreover, CS is attractive in the way that sometimes simple solutions, such as brute-force or rule-based methods, work the best, rather than some complex algorithms. 9) What would you like to say to those interested in joining the CS department? Many people believe that one must be excellent in programming in order to study CS, but that is not the complete truth. As long as one is passionate about studying CS, programming is something that can be learned over time. Research in CS evolves fast. In order to keep up with the fast pace, it is important to take the coursework seriously and maintain a proactive attitude about learning new things. I recommend to communicate often and effectively with one’s advisor. Lastly, one must be open to use interdisciplinary or integrated approaches when solving a problem in CS. 10) What are your future plans? I plan to continue my research in fake review and information identification as a Ph.D. student. I am also interested in providing information to users based on their personal text data on websites such as SNS. Another idea that interests me is developing an English writing assistant application for people whose first language is not English. After earning my Ph.D., I would like to become a professor and do research as well as teaching.

    ...Read more
  • Minjeong Yoo, BSc. Student Spotlight

    1) How did you get to join the Computer Science (CS) department? I had my first encounter with CS in the introduction to programming course during my freshman year of university. I found it fascinating to see robots move on the screen exactly according to the code that I wrote. I especially enjoyed the logical thinking involved in every step of the programming experience, so I chose to major in CS. 2) What was your academic path like up until joining the CS department? I enjoyed studying mathematics when I was in middle school, so I attended a science high school afterwards and participated in math clubs for several years. 3) What was your childhood dream? What are you doing now to achieve that dream? It may sound a bit too abstract, but my dream was to become a great leader. I have not achieved that dream in significant ways yet. However, I believe that studying and working diligently in my field of choice, CS, will lead to making that dream come true eventually. 4) What are your strengths? My strength is that when I set a goal, I am very persistent in making sure that I achieve it. 5) What are you passionately working on in the field of CS these days? 6) What values and future prospects do you see in your current work? Currently, there is a shortage of people with science and technology background in the area of national policy making. Thus, I would like to utilize my CS background to create effective policies for advancement of science and technology in Korea. 7) What were your happiest and most disappointing moments, respectively, in the CS department? My happiest moment is when I finished my first project. It gave me the confidence that I much needed at the time, when I had just joined the CS department and was worried about my lack of skills. After finishing that project perfectly by myself, however, I was simply happy and felt more confident about my potential to excel in this field. 8) What do you think is the best thing about studying CS? Studying CS develops logical thinking skills, and putting new ideas into action is possible by writing code and implementing prototypes. 9) What would you like to say to those interested in joining the CS department? People tend to be shy about not knowing enough when they come to the CS department and begin learning CS in depth for the first time. I would tell them not to be shy about asking questions to friends or upperclassmen whenever they feel stuck on something. Asking questions and discussing problems will surely lead to better thinking and programming skills. 10) What are your future plans? After earning my degree, I would like to work for a government agency and work hard to make national policies that foster science and technology advancement in Korea.

    ...Read more
  • Huiseok Son, PhD Student Spotlight

    1) How did you get to join the Computer Science (CS) department? My choice to join the CS department was, to be sure, a surprising one. When I was in high school, I was just a regular student who liked math and chemistry and knew nothing about programming. That was probably the reason why I did not receive a good grade from the required programming course here at KAIST. It left me feeling that my programming skills are rather inferior compared to those of my peers. On a fateful Teacher Appreciation Day, however, the adviser of my club told me something that changed my perspective. He encouraged me to apply to the Department if what I want to do in my future career is closely related to computer science. This advice motivated me to study harder during summer breaks, and when the time to apply for the Department came, I took the chance and chose the CS department. 2) What was your academic path like up until joining the CS department? I did not have any special academic path until I came to the Department. As I said above, I was just a regular high school student who studied hard according to the given curriculum, and after I came to university, I actively participated in the campus life. I motivated myself to work harder in order to stay competitive amongst my bright peers. As a result, my grades improved quite a lot during those times. 3) What was your childhood dream? What are you doing now to achieve that dream? My early childhood dream was to go to Harvard University, which is a very simple-minded and wistful dream in retrospect. I did not even know what I wanted to major in but just wanted to go the world’s best university. But, as I grew up, I found myself to be the happiest and passionate when I was passing on my knowledge to others. It led me to consider a teaching profession, so I now want to become a university professor. Since that dream took place within my mind, I have always asked myself if I will ever be knowledgeable enough to teach people at university level. That question humbles me and motivates me to work harder in my studies and research. I am also open to meeting and learning from people of diverse backgrounds. 4) What are your strengths? My strengths are my optimistic personality and healthy body. I never let go of optimistic thinking regardless of what circumstances I may find myself in. Such optimism has helped me reduce stress even at times of heavy workloads. I also believe that optimistic thinking often leads to wisdom that allows me to overcome the present hardship. My healthy body is a result of the regular exercise I have enjoyed doing since I was a child. Even now, when I feel stressed out, I would go out to exercise with my friends. Physical strength is an essential factor in one’s ability to do research. 5) What are you passionately working on in the field of CS these days? I am currently working at a laboratory, so I am working hard on the given projects as well as my individual research. I am eager to produce good results with my research soon and go to top conferences and get published on journals. What I really like about going to conferences is talking to researchers from other countries. I find such conversations to be academically enriching and fun! 6) What values and future prospects do you see in your current work? My current research has to do with smartphones and their user experiences. Thus, if I can produce good results, it would help to alleviate some of the inconveniences that people feel while using their smartphones. Furthermore, if I can pass on the lessons from my current research experience to the future generation, that would be even more valuable of a contribution. 7) What were your happiest and most disappointing moments, respectively, in the CS department? Like most of the CS students, I had my happiest moment when I see that my program is working correctly after locating and fixing a bug after countless hours. Nothing can really compare to that moment of joy, which usually leads me to shout out “Hurray!” The most disappointing moment was when I got my conference paper rejected. Receiving cold reviews on a paper that I carefully composed can be hard to take. It is a humbling experience, but it also strengthens my desire to write better papers and get accepted to top conferences. 8) What do you think is the best thing about studying CS? The best thing is that the people I meet in this field tend to be very open-mined and practical. It is hard to find working environments that are freer than they are for CS-related jobs. People who study CS are always open to learning new things. The fact that computers are ubiquitous in today’s world means that there is more need for people who study CS like me. I find it highly attractive that CS is a field with a vast amount of opportunity to make a difference in the world. 9) What would you like to say to those interested in joining the CS department? I am sure that you are making a great choice for the present as well as the future! This is a field that never gets boring and always presents new challenges. I would also like to tell those who are afraid of joining the CS department, that it may very well be worth a try. CS is a field of study with a relatively high learning curve at first, but after you open your eyes to all that it has to offer, it is truly an amazing experience. I am personally an example of someone who could not even program to print out “Hello World” during my freshman year, but now happily working on my Ph.D.. So, can your program print out “Hello World?” Then, I would say that you are at a better starting position than where I was. 10) What are your future plans? I want to publish outstanding papers and earn my Ph.D. degree. Although I am not sure where I will be working at afterwards, I do want to spend some time studying in the United States. I want to study in the States, where the best of minds in CS gather to develop and share their ideas, so that I could become a great researcher and professor myself. It is okay if I end up doing with a job other than being a professor, though, as long as I am always learning and improving myself as a person.

    ...Read more
  • Prof. Kyu­Young Whang Receives Contributions Award..

    Prof. Kyu-Young Whang, Distinguished Professor of Computer Science at KAIST, was the recipient of the 2014 ACM SIGMOND Contributions Award. Founded in 1947, the Association for Computing Machinery (ACM) is the world’s largest educational and scientific computing society, delivering resources that advance computing as a science and profession. SIGMOD is the Association for Computing Machinery’s Special Interest Group on Management of Data, which specializes in large-scale data management problems and databases. Since 1992, the ACM SIGMOND has presented the contributions award to one scientist who has made significant contributions to the field of database systems through research funding, education, and professional services. So far, 23 people including Professor Whang have received the award. Professor Whang was recognized for his key role in the growth of international conferences and journals in the field of database such as The VLDB Journal (The International Journal on Very Large Data Bases), VLDB Endowment Inc., IEEE Technical Committee on Data Engineering, and Database Systems for Advanced Applications (DASFAA). IEEE stands for the Institute of Electrical and Electronics Engineering. For the full list of ACM SIGMOND Contributions Award recipients, please go to http://www.sigmod.org/sigmod-awards/sigmod-awards#contributions

    ...Read more
  • Prof. Min H. Kim is appointed as an Associate Edit..

    Prof. Min H. Kim is appointed as an Associate Editor of ACM Transactions on Graphics (TOG). The Association for Computing Machinery (ACM) was founded in 1947 and has served as the world’s most prestigious scientific and educational computing society along with the Institute of Electrical and Electronics Engineers (IEEE). The roles and responsibilities of an Associate Editor include selecting appropriate referees to perform reviews on submitted manuscripts and preparing reports for the main findings of the review process. The manuscripts selected for publication are presented at the world’s largest Computer Graphics conference, ACM SIGGRAPH. Professor Kim has published numerous papers in the areas of computer graphics research, with emphases in the areas of 3D imaging spectroscopy and visual perception. He regards his appointment to TOC as a great opportunity and looks forward to making further outstanding contributions to advance research in computing.

    ...Read more
  • Eugen Wüster Prize Award

    [Prof. Key­Sun Choi] At the closing ceremony of the International Conference in Terminology and Knowledge Engineering (TKE) 2014 hosted by the German Institute for Standardization in Berlin, Germany, Professor Key-Sun Choi of Department of Computer Science and Korea Terminology Research Center for Language and Knowledge Engineering (KORTERM) at KAIST has been awarded the Eugen Wüster Prize for his long-time international achievements in the field of terminology science as the Secretary of ISO/TC37/SC4 for language resource management and the Vice-President of Infoterm since 2002. The Prize named in honour of Eugen Wüster (1898-1977), commonly known as the “Father of Terminology Science”, is being awarded every three years from 1997, to recognize scholars of outstanding achievements in the field of terminology science and other related studies. So far, a total number of 10 scholars around the world, including Prof. Choi, have received the Award. For further information, please visit http://www.infoterm.info/activities/news/2014/2014_07_06.php.

    ...Read more
  • Developing a Text Mining Search Engine for Cancer ..

    [Prof. Jong Cheol Park] The Ministry of Science, ICT, and Future Planning announced on May 22nd that the research teams led by Professor Jong Cheol Park of KAIST and Professor Hyunju Lee of GIST have developed OncoSearch, a text mining search engine that searches Medline abstracts for sentences describing gene expression changes in cancers. This federally funded research project was carried out on an interdisciplinary research effort converging linguistics, computer engineering, biology, and medicines. In order to identify genes that cause cancers and to understand how such genes affect cancers, abnormal gene expressions in cancers are actively studied. To facilitate the studies, OncoSearch utilizes powerful text mining techniques to extract the relevant information from the large amount of information available in the biomedical literature. OncoSearch allows the user to efficiently search for genes that affect particular types of cancers, compare expression levels of a gene across various types of cancers, and explore a graph to find interactions between genes in a type of cancer. “OncoSearch is a novel tool that automatically collects information on cancer related genes using the latest text mining techniques, and we expect its active use will help the ongoing cancer research efforts,” said Professor Park. The research results were published in the online version of Nucleic Acids Research, on May 9th, 2014.

    ...Read more
  • Prof. Kyu-Young Whang Recognized for his Distingui..

    Prof. Kyu-Young Whang has received the Distinguished Contributions Award at the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) which was held in Taiwan on May 13-16th. At this respected data mining conference in the Pacific-Asia region, Professor Whang was recognized for his influential work in the research field as a life member on the PAKDD Steering Committee. The award was given to 6 recipients including Professor Whang, and he is the first Korean person to be a recipient. In 2011, Professor Whang also received the Outstanding Contributions Award at another prestigious conference called Database Systems for Advanced Applications (DASFAA). The database and data mining research in the Asia-Pacific region, regarded as primitive 20 years ago, have come a long way to be on comparable footings with those in North America/Europe, thanks to relentless efforts and contributions made by countlessly many researchers including Professor Whang. Recently, database research in the Asia-Pacific region is much heightened as, among the three major academic organizations in the database area, Prof. Whang is leading IEEE TCDE, Prof. Beng Chin Ooi from Singapore The VLDB Endowment, and Prof. Don Kossmann from Switzerland ACM SIGMOD.

    ...Read more
  • Prof. Kwangjo Kim to Represent Korea in IFIP TC­11

    Prof. Kwangjo Kim was appointed to represent Korea in International Federation for Information Processing (IFIP)’s Technical Committee-11 (TC-11) for his internationally recognized contributions to the advancement of security and cryptology research in the past 30 years. Since its establishment in 1960, IFIP has been the leading multinational, apolitical organization in Information & Communications Technologies and Sciences. It is recognized by many international organizations including the United Nations for bringing IT Societies from 56 countries together on important topics in informatics. In particular, TC-11 is involved in research for increased trustworthiness in information processing, such as developing a common frame of reference for security and privacy protection. “Through this IFIP role, I would like to present Korea’s outstanding information and security technology and show that we are one of the world’s leading nations in the security technology,” said Professor Kim. His previous roles include Director of International Association for Cryptologic Research, AsiaCrypt Steering Committee Chair, President of Korea Institute of Information Security & Cryptology, and visiting professor at MIT and KUSTAR. This year, he is serving as the General Chair of Cryptographic Hardware and Embedded Systems (CHES) 2014, to be held in Busan this coming September.

    ...Read more
  • Our Ph.D Graduate Appointed as an assistant profes..

    Our Ph.D Graduate Appointed as an assistant professor to Michigan State University Dr. Taiwoo Park, who recently graduated with a Ph.D under the co-advisement of Professor Junehwa Song and Professor Uichin Lee, has been appointed as an assistant professor to Michigan State University, located in East Lancing, MI, USA. Dr. Park’s primary research interests are Ubiquitous Game Design and Supporting System, Mobile User Interaction, Mobile and Ubiquitous Computing, Sensor Network and Data Stream Processing System. As a Ph.D student, he was recognized for his outstanding research with an award from the ACM’s CHI conference, which is considered to be the top in the Human-Computer Interaction field In the coming August, Dr. Park will continue his work in the research area of game design, research, and development at the Telecommunication, Information Studies and Media department in the College of Communication Arts and Science. Congratulations on your appointment to an assistant professorship at Michigan State University!

    ...Read more
  • The Godfather of the Internet in Korea

    [Prof. Kilnam Chon] While it is a commonly known fact that the United States is the birthplace of the Internet, many people are surpised to learn that Korea was the second country to successfully establish the Internet. The historic setting was May 15, 1982 inside a research laboratory located in Gu-mi, Korea. Dr. Chon and his team watched as their computer printed out “$ rlogin snucom” on the screen, indicating a successful remote login to a computer at Seoul National University. Hugging each other and crying shouts of joy, the research team led by Dr. Chon had officially opened a new chapter in the history of the Internet. From that day on, Chon has remained the godfather of the Internet in Korea. Dr. Chon received a PhD degree in computer science from University of California, Los Angeles in 1974, and a BS degree in engineering science from Osaka University. He joined the Korea Institute of Electronics Technology in 1979 to work on computer system development, and moved to Korea Advanced Institute of Science and Technology in 1982 as a professor in the Computer Science Department. In a recent interview with a Korean newspaper, Dr. Chon explained that he came to Korea with a determination to make a difference in the country with his technical expertise. With a full support from the Korean government, Dr. Chon and his fellow researchers pursued the challenging goal of advancing the computing technology in Korea and succeeded in making Korea to be the world’s second to establish the Internet. During his time as a professor in KAIST Compuster Science Depeartment, Dr. Chon was well known for his demand for perfection from his students. He would not only help his students fulfill their full intellectual potential but also emphasize the importance of regular physical exercise. He sharply points out the fact that the students who succeeded the most after graduating from his laboratory are the ones who exercised the most rigorously under his advice. After his retirement, Dr. Chon, the godfather of the Internet in Korea, is currently working as a professor at Keio University with the goal of making its computer science program to be the best in Japan.

    ...Read more
  • Taiwoo Park Won ACM CHI 2014 Honorable Mention Awa..

    Taiwoo Park and his five co-authors including his advisor, Professor Junehwa Song, won this year’s ACM CHI Honorable Mention Award for their paper, “Human Factors of Speed-based Exergame Controllers.” The CHI conference is a highly prestigious conference, ranked at the very top of the MS Academic Search list for Human-Computer Interaction conferences. Congratulations on your award!

    ...Read more
1 2 3 4 5 6 7 8