KAIST - COMPUTER SCIENCE

  • korea
  • search
  • login

Directions

 
AI is Computing Theory 인공지능과 전산이론

더 정확한, 편리한, 안전한, 공평한, 설명 가능한 AI를 개발하기 위해 통계학, 해석학뿐만 아니라 계산 이론, 소프트웨어 공학, 프로그래밍 언어 등 전산 이론 기반이 필수적이다. 이와 동시에, AI 기술을 이용한 전산 이론 및 기술 개발도 활발히 진행되고 있다.

  • 2023

  • Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility

    Lee, Hoil, Ayed, Fadhel, Jung, Paul, Lee, J, Hongseok Yang, Caron, Francois
    JOURNAL OF MACHINE LEARNING RESEARCH
    2023

    []

  • 2021

  • A Generalization of Hierarchical Exchangeability on Trees to Directed Acyclic Graphs

    Jung, Paul Heajoon, Lee, Jiho, Sam Staton, Hongseok Yang
    Annales Henri Lebesgue
    2021

  • 이미지 분할과 관심 영역 맵 기반 색상 스키마 추출

    김수지, 최성희
    정보과학회논문지
    2021

  • 2019

  • Bayesian Optimistic Kullback-Leibler Exploration

    Kang Hoon Lee, Geonhyeong Kim, Ortega, Pedro, Lee, Daniel D., Kee-Eung Kim
    MACHINE LEARNING
    2019

  • 2017

  • Foreword: special issue for the journal track of the 8th Asian conference on machine learning (ACML 2016)

    Durrant, RJ, Kee-Eung Kim, Holmes, G, Marsland, S, Sugiyama, M, Zhou, ZH
    Machine Learning
    2017

    []

  • Search-Based Approaches for Software Module Clustering Based on Multiple Relationship Factors

    Jimin Hwa, Shin Yoo, Seo, Yeong-Seok, Doo-Hwan Bae
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING
    2017

    []

  • 2015

  • Hierarchical Bayesian Inverse Reinforcement Learning

    Choi Jaedeug, Kee-Eung Kim
    IEEE TRANSACTIONS ON CYBERNETICS
    2015

    [] []

  • 2012

  • Exploiting symmetries for single- and multi-agent Partially Observable Stochastic Domains

    Byung Kon Kang, Kee-Eung Kim
    Artificial Intelligence
    2012

    [] []

  • Identifying Helpful Reviews Based on Customer’s Mentions about Experiences

    Hye-Jin Min, Jong C. Park
    EXPERT SYSTEMS WITH APPLICATIONS
    2012

    [] []

1