Directions
더 정확한, 편리한, 안전한, 공평한, 설명 가능한 AI를 개발하기 위해 통계학, 해석학뿐만 아니라 계산 이론, 소프트웨어 공학, 프로그래밍 언어 등 전산 이론 기반이 필수적이다. 이와 동시에, AI 기술을 이용한 전산 이론 및 기술 개발도 활발히 진행되고 있다.
Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility
Lee, Hoil, Ayed, Fadhel, Jung, Paul, Lee, J, Hongseok Yang, Caron, Francois
JOURNAL OF MACHINE LEARNING RESEARCH
2023
[]
A Generalization of Hierarchical Exchangeability on Trees to Directed Acyclic Graphs
Jung, Paul Heajoon, Lee, Jiho, Sam Staton, Hongseok Yang
Annales Henri Lebesgue
2021
이미지 분할과 관심 영역 맵 기반 색상 스키마 추출
김수지, 최성희
정보과학회논문지
2021
Bayesian Optimistic Kullback-Leibler Exploration
Kang Hoon Lee, Geonhyeong Kim, Ortega, Pedro, Lee, Daniel D., Kee-Eung Kim
MACHINE LEARNING
2019
Foreword: special issue for the journal track of the 8th Asian conference on machine learning (ACML 2016)
Durrant, RJ, Kee-Eung Kim, Holmes, G, Marsland, S, Sugiyama, M, Zhou, ZH
Machine Learning
2017
[]
Search-Based Approaches for Software Module Clustering Based on Multiple Relationship Factors
Jimin Hwa, Shin Yoo, Seo, Yeong-Seok, Doo-Hwan Bae
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING
2017
[]
Hierarchical Bayesian Inverse Reinforcement Learning
Choi Jaedeug, Kee-Eung Kim
IEEE TRANSACTIONS ON CYBERNETICS
2015
[] []
Exploiting symmetries for single- and multi-agent Partially Observable Stochastic Domains
Byung Kon Kang, Kee-Eung Kim
Artificial Intelligence
2012
[] []
Identifying Helpful Reviews Based on Customer’s Mentions about Experiences
Hye-Jin Min, Jong C. Park
EXPERT SYSTEMS WITH APPLICATIONS
2012
[] []