1. Explain the following: (30%)
 1) foreign key
 2) data independence
 3) IDREFS in XML
 4) What are the four major concepts of the dataflow model?
 5) Why is the normalization necessary (What are the problems of the unnormalized table)?
 6) completeness of the D(data)-schema with respect to the F(functional)-schema

2. Construct a B+ tree for the following set of key values:
 (2, 3, 5, 7, 11, 17, 19, 23, 29, 31)
 Assume that the tree is initially empty and values are added in the ascending order. Construct the B+ tree for the case that the number of pointers that will fit in one node is four. Show the tree after each insertion. (20 %)

3. Assume two base relations r(A,B) and s(A,C) with |r| = 15,000,000 and |s| = 800,000. The block (page) size is 2,000 bytes, and the tuple size is 400 bytes for both relations. The values of the integer attribute A are uniformly distributed in relation r and |r.A| = 500,000, where r.A is the set of distinct values of A in r. There is a B+ tree index on attribute A in relation r, where each node contains up to 200 index entries.

 1) For \(x \in r.A \) determine the number of blocks to read for \(\sigma_{A=x}(r) \) if the index is used.
 a) the index is clustered. (10%)
 b) the index is unclustered. (8%)

 2) Assume that A is the key of s and a foreign key of r, estimate the number of tuples for \(r \bowtie s \) and explain why. (8%)
4. Consider the following two schemas. Remove the generalization hierarchy. (24%)

1) Using the superset entity (p: partial, e: exclusive)

![Diagram 1](image1.png)

2) Using the subset entities (t: total)

![Diagram 2](image2.png)