Theory of Programming Languages

Phd. Qualifying Exam (January 6, 2012)
Answer two questions out of four. Only top two scores will be considered.

Problem 1. Language run-time structure:
Consider a language that has:
- dynamic scoping
- third class procedures and functions (i.e., procedures and functions that can be declared
and called, but cannot be passed as arguments or assigned as variable values);
- dynamic types such as pointers and extensible arrays;

- no recursion.

Describe a runtime structure that will maintain correct execution for this language. Make
it as simple as possible. Include a description of how memory is laid out by the
compiler, and distinguish this from how memory is manipulated at run-time. Explain how
correct values are found at run-time for the variable references in the code. Use diagrams

to make your answer as clear as possible.

Problem 2
Different programming languages provide different degrees of block structure, in which the
scope of an identifier can be limited to a portion of the program text. Blocks are here defined
always to be properly nested, i.e. either one block is completely contained within another or the
two blocks are disjoint.

For example, Pascal allows one procedure definition to be nested within another; it also
allows one record to be nested within another. C allows nesting of a record(struct), but not of a

procedure. Fortran provides disjoint blocks (e.g. commen and subroutine), but no nesting.

Consider a language with block structure, and a compiler for the language. For each of the
five following assertions state to what extent you agree or disagree with it, and why. Where
appropriate, be careful to consider both lifetime (temporal duration) and scope (spatial extent of

visibility).

a. Block structure makes it easier to implement a variable that continues to live, keeping its value,
between invocations of the procedure in which it is declared. (An example application is the seed
for a pseudo-random number generator. Example constructs are own variables in Algol which

introduced the concept and static variables in PL/l and C.)




b. Block structure makes a program harder to understand, because it permits identifiers to be reused
for different purposes.

¢. Block structure permits modularization, hence faster recompilation and easier error identification.

d. Consider a goto to a label in an enclosing procedure block. The code compiled for the goto is not

appreciably more complex than the code compiled for a goto to a label in the same block.

e. Block structure reduces the main storage space requirement at both compilation time and execution

time, permitting the use to run with a smaller machine.

Problem 3
Consider the expressions defined by the following abstract syntax
e = 0|3 |x|e+e|exe
where "+" and "x" arc addition and multiplication, respectively. Note that "x" is a variable.
Define denotational semantics for e precisely. Don't forget to define domains of your functions and

values.

Problem 4
Consider a language with expressions defined by the following abstract syntax
e = O0|3|x|e+te|lexe
where “+" and "x" are addition and multiplication, respectively. Note that "x" is a variable.
Design your type system for e precisely. What is the goal of your type system? That is, what can

your type system guarantee for programmers?



