
1. True/False Problems

Answer the following true/false (T/F) questions. Each T/F problem is worth 2 points. Each
missing or wrong answer costs -2 point.

(a) The dispatcher is responsible for setting thread priorities.
(b) If a thread is CPU-bound, it makes sense to give it higher priority for disk I/O than an

I/Obound thread.
(c) Virtual addresses must be same size as physical addresses
(d) Page offsets in virtual addresses must be the same size as page offsets in physical

addresses.
(e) Implementing processor affinity in a multiprocessor scheduler is likely to reduce the

number of misses in caches such as translation lookaside buffers.
(f) With demand paging, adding memory to a system always improves the cache hit

rate.
(g) It is not possible to implement user-kernel separation without hardware support for

dual mode operation.
(h) Without “free” (deallocate) it is easy to write a “malloc” implementation that never

fragments memory.
(i) SSD reads always outperform reads to a spinning media hard drive
(j) SSD writes always outperform writes to a spinning media hard drive
(k) Writes to an SSD are significantly faster than Reads from an SSD.
(l) DMA allows an I/O device to transfer data to and from memory without involving the

CPU in the transfer.
(m) Memory mapped I/O maps disk blocks to page frames.
(n) There is only one MBR (master boot record) on a disk drive, but there could be

several boot sectors.
(o) A context switch from one process to another can be accomplished without

executing OS code in kernel mode.
(p) On the x86 architecture, if a given memory reference (load or store) causes a TLB

miss, then that memory reference also causes a page fault.
(q) The Elevator disk scheduling algorithm bounds the waiting time for all disk requests.
(r) An entry in the open file table maintains a pointer to an in-memory inode structure.
(s) When a process issues a system call, the OS code starts by executing an instruction

to change the processor mode (from user to kernel).

2. Short Questions

(a) Suppose you run a workload using a fixed-size 1 MB (megabyte) buffer cache and

notice that there are many disk references. If you repartition main memory to
increase the buffer cache size to 2 MB, is it possible that the workload actually run
significantly slower? Explain why. (2 points)

(b) Is address translation (virtual memory) useful even if the total size of virtual memory
as summed over all possible running programs is guaranteed to be smaller than a

machine’s total physical memory? Why? (2 points)

(c) If the block size is doubled in the UNIX file system, will this double the maximum file
size? Explain why? (2 points)

(d) Explain the reasoning behind the use of the LRU algorithm for virtual memory page
replacement and file system buffer caches. (2 points)

(e) You overhear one of your classmates saying that any space considered internal
fragmentation must not be on the free list while any external fragmentation must be
on the free list. Is this statement correct? Justify your answer. (2 points)

(f) What is a TLB and what does it do? (2 points)

(g) In class, we discussed copy-on-write for memory pages shared among multiple
processes. Why is copy-on-write potentially better than copying the entire process
immediately upon creation? (2 points)

(h) Which of the following operating systems use the optimal memory page replacement
algorithm? Windows 7/10, Solaris (Sun UNIX), Linux, iOS, and Android. (2 points)

3. Choose the best answer for the following question. (2 points)

Counting semaphores:

(a) generalize the notion of a binary semaphore
(b) are used for managing multiple instances of a resource
(c) have increment and decrement operations
(d) can use queueing to manage waiting processes
(e) all of the above

4. Consider the following list of actions. Put a check mark in the blank beside those actions
that should be performed by the kernel, and not by user programs. Put at most 4 marks.
(6 points; any additional mark beyond 4 takes 1.5 point off each)

• reading the value of the program counter (PC).
• changing the value of the program counter (PC).
• changing the value of the segment table base register.
• changing the value of the stack pointer (SP).
• increasing the size of an address space.
• creating a memory segment that is shared between multiple

processes.
• writing to a memory segment that is shared between multiple

processes.
• disabling interrupts.

5. Processes (or threads) can be in one of three states: Running, Ready, or Blocked. In
which state is the process (or thread) for each of the following four cases? (3 points)

(i) Waiting for data to be read from a disk.
(ii) Spin-waiting for a lock to be released.
(iii) Having just completed an I/O and waiting to get scheduled again on the CPU.

6. Why is switching threads less costly than switching processes? (2 points)

7. Suppose a thread is running in a critical section of code, meaning that it has acquired all
the locks through proper arbitration. Can it get context switched? Why or why not? (3
points)

8. Why would two processes want to use shared memory for communication instead of
using message passing? (2 points)

9. (a) If a normal access to memory takes 100 ns (100×10^-9 sec) and reading a page

from disk takes 10 ms (10×10^-3 sec), what is the average memory access time
(including page fault overhead) if page faults occur in 0.1% of the memory references?
You may assume that there is no additional overhead due to TLB misses. (2 points)

(b) What is the maximum allowable page fault rate if performance degradation is to be
no more than 10% (i.e. average memory access time ≤ 110 ns)? (2 points)

10. Assuming a page size of 1 KB and that each page table entry (PTE) takes 4 bytes, how

many levels of page tables would be required to map a 34-bit address if every page
table fits into a single page. Be explicit in your explanation. (7 points)

11. The Google Android Operating System uses a Linux kernel to support its applications.

Each application runs in its own process. Android devices do not typically have a disk,
and they (typically) do not use swapping to stretch the amount of available physical
memory when they run short. Instead, the OS may terminate processes, requiring the
applications to store and restore their state when this happens. Under these
circumstances, would Android still derive any benefits from Linux’s virtual memory
management scheme? Justify your answer! (4 points)

