Problem 1 (5+ 5+ 5+ 5 points):

a) Which of the following are sound measures of algorithmic cost?

- [] software licence fee/purchase cost
- [] programmers’ salaries
- [] runtime (#CPU seconds)
- [] runtime (#steps)
- [] asymptotic (big-O) #steps
- [] asymptotic memory consumption (#bits)
- [] asymptotic communication volume (#bits)
- [] asymptotic #processors · #parallel steps
- [] energy consumption (#kWh)
- [] #bugs

b) Which of the following are sound notions of an algorithm’s performance?

- [] worst-case
- [] best-case
- [] typical case
- [] average-case†
- [] in practice
- [] on a benchmark
- [] amortized
- [] expected (for randomized algorithms)
- [] accuracy (for approximation algorithms)
- [] competitive (for online algorithms)

c) Explain the differences between (i) a program, (ii) an algorithm, and (iii) a heuristic.

d) Explain the difference between (i) algorithmic cost and (ii) computational complexity.

* Check your multiple choice answers on this paper: ½ point for each correct, 0 for each incorrect
† with respect to a certain probability distribution on the space of inputs...
Problem 2 (5+5+5+5 points):

a) Specify (!) and describe three significantly different algorithms for sorting \(n \) given keys, together with their asymptotic computational worst-case costs. (No proofs required.)

b) Asymptotically analyze the (number of arithmetic operations used by the) high-school method (a.k.a. long multiplication) for calculating, given the coefficients \(a_0, \ldots, a_n \) and \(b_0, \ldots, b_n \) of univariate polynomials \(A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_n x^n \) and \(B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_n x^n \), determine the coefficients \(c_0, \ldots, c_{2n} \) of their product polynomial \(C(x) := A(x) \cdot B(x) \).

c) Verify the correctness of the following formula. Describe a recursive algorithm based on it for the problem from b).

\[
(A_0(x) + A_1(x) x^n) \cdot (B_0(x) + B_1(x) x^n) = C_0(x) + C_1(x) x^n + C_2(x) x^{2n},
\]

where \(C_0(x) := A_0(x) \cdot B_0(x) \), \(C_2(x) := A_1(x) \cdot B_1(x) \), and

\[
C_1(x) := \left(A_0(x) + A_1(x) \right) \cdot \left(B_0(x) + B_1(x) \right) - C_0(x) - C_2(x).
\]

d) Analyze the asymptotic runtime (number of arithmetic operations) of your algorithm from c).

Problem 3 (10x 2 points): Match\(^5\) the algorithms/problems on the left to their least (known) among the classes of asymptotic worst-case runtime/time complexity to the right:

Binary search among \(n \) sorted elements	\(O(\log^2 n) \)
Comparison-based sorting	\(O(\sqrt{n}) \)
Connectedness of a given graph	\(O(n) \)
Vertex Cover (Problem 5)	\(O(n\log^2 n) \)

Edge Cover: Given a graph \(G=(V,E) \) and \(k \in \mathbb{N} \), do there exist edges \(e_1, \ldots, e_k \in E \) s.t. every vertex \(v \in V \) belongs to some \(e \in \{e_1, \ldots, e_k\} \)?

Minimum Spanning Tree of a given connected graph with \(n \) vertices and \(O(n) \) edges	\(O(n^2\log^2 n) \)
Multiplication of two \(n \times n \) matrices of entries 0,1	\(O(n^3\log^2 n) \)
Syntax test (parsing) w.r.t. a regular grammar	\(P \)
Syntax test w.r.t. a context-free grammar	\(\mathcal{NP} \)
Searching a given string of length \(n \) for the occurrence of a given substring of length \(O(n) \)	

\(^5\) Draw your answers on this paper: 2 points for each correct line, 0 for each missing/incorrect one
Problem 4 (5+5+5+5 points):

a) What is the asymptotic (i) worst-case and (ii) amortized cost of incrementing a binary counter, when each bit-flip counts as one step? (No proof is required here…)

b) Prove your second claim from a).

c) Determine the average cost of the following fun algorithm, asymptotically as $n \to \infty$:
Given a tuple (b_1, \ldots, b_n) of n bits, search the (index j of the)
first non-zero bit b_j; in case all b_j are zero, count to 2^n-1 and stop.

d) What is the (i) worst and (ii) expected cost of the following randomized 'algorithm':
Flip a coin. If it comes out heads, stop; otherwise repeat.
Hint: It holds $\sum_n n \cdot p^n = p/(1-p)^2$ for all $|p|<1$.

Problem 5 (5+5+5+5 points): Recall that Vertex Cover is the following optimization problem: Given an undirected graph $G=(V,E)$, find the least number $k=k(G)$ of vertices $v_1, \ldots, v_k \in V$ such that every edge $e \in E$ is incident to (i.e. has among its two end points) at least one vertex from the set $C=\{v_1, \ldots, v_k\}$. The corresponding decision problem asks whether, given G and ℓ, it holds $k(G) \leq \ell$.

a) Determine $k(G)$ and an optimal Vertex Cover for the following graph G:

b) Consider the following greedy algorithm, initialized with $C=\{\}=F$:

WHILE there exists an edge $e=\{a,b\} \in E$,
add e to F and both its end points a,b to C
and remove from E all edges incident to a or b.

Prove that the resulting set C constitutes a vertex cover of size $2|F| \leq 2 \cdot k(G)$,
i.e. a 2-approximation.

c) Prove that the analysis in b) is optimal by constructing (a family of) graphs G
where the above algorithm produces a vertex cover of size $2 \cdot k(G)$.

d) Will the following variant of b) also yield a vertex cover and which approximation ratio?

For each edge $e=\{a,b\} \in E$ add only one (arbitrary) of its end points to C
and remove from E all edges incident to that vertex.

Justify your answers!