HAMA: An Efficient Matrix Computation with the
MapReduce Framework

Sangwon Seo” Edward J. Yoon" Jaehong Kim* Seongwook Jin®
KAIST NHN Corp. KAIST KAIST

Jin-Soo Kim™
Sungkyunkwan University

Seungryoul Maeng™
KAIST

CS/TR-2010-330

July 06, 2010

KAIST
Department of Computer Science

“ swseo@camars.kaist.ac.kr
" edwardyoon@apache.org

* jaehong@camars.kaist.ac.kr
8 swjin@camars.kaist.ac.kr
" jinsookim@skku.edu

" maeng@camars.kaist.ac.kr



HAMA: An Efficient Matrix Computation with the
MapReduce Framework

Sangwon Seo Edward J. Yoon Jaehong Kim
Computer Science Division User Service Development Center Computer Science Division
KAIST (Korea Advanced Institute of NHN Corp., South Korea KAIST (Korea Advanced Institute of
Science and Technology), South Korea  edwardyoon@apache.org Science and Technology), South Korea
swseo@calab.kaist.ac.kr jaehong@calab.kaist.ac.kr
Seongwook Jin Jin-Soo Kim Seungryoul Maeng

Computer Science Division School of Information and Communication ~ Computer Science Division
KAIST (Korea Advanced Institute of Sungkyunkwan University, South Korea KAIST (Korea Advanced Institute of

Science and Technology), South Korea jinsookim@skku.edu Science and Technology), South Korea
swijin@calab.kaist.ac.kr maeng@calab.kaist.ac.kr
Abstract—APPLICATION. Various scientific computations | HAMA APL |

have become so complex, and thus computation tools play an
important role. In this paper, we explore the state-of-theart
framework providing high-level matrix computation primit ives Computation Engine
with MapReduce through the case study approach, and demon- MapReduce BSP Dryad (Plugged In/Out)
strate these primitives with different computation engine to

HAMA Core HAMA Shell

show the performance and scalability. We believe the oppounity | Zookeeper | Distributed Locking
for using MapReduce in scientific computation is even more — -
promising than the success to date in the parallel systems
literature. Storage Systems
| HDFS | | ] RDBMS \
. INTRODUCTION ‘ File ‘

As cloud computing environment emerges, Google has
introduced the MapReduce framework to accelerate parallel
and distributed computing on more than a thousand of in-
expensive machines. Google has shown that the MapReduce
framework is easy to use and provides massive scalabilityHAMA is a distributed framework on Hadoop for massive
with extensive fault tolerance [2]. Especially, MapRedfite matrix and graph computations. HAMA aims at a power-
well with complex data-intensive computations such as -higful tool for various scientific applications, providing las
dimensional scientific simulation, machine learning, aathd primitives for developers and researchers with simple APIs
mining. Google and Yahoo! are known to operate dedicatétAMA is currently being incubated as one of the subprojects
clusters for MapReduce applications, each cluster congistof Hadoop by the Apache Software Foundation [10].
of several thousands of nodes. One of typical MapReduceFigure 1 illustrates the overall architecture of HAMA.
applications in these companies is to analyze search logsHAMA has a layered architecture consisting of three compo-
characterize user tendencies. The success of Google prdmpients: HAMA Core for providing many primitives to matrix
an Apache opensource project called Hadoop [11], whichasd graph computationd]AMA Shell for interactive user
the clone of the MapReduce framework. Recently, Hado@pnsole, andcHAMA APL The HAMA Core component also
grew into an enormous project unifying many Apache suldetermines the appropriate computation engine. At this mo-
projects such as HBase [12] and Zookeeper [13]. ment, HAMA supports three computation engines: Hadoop’s

Massive matrix/graph computations are often used as pklapReduce engine, our own BSP (Bulk Synchronous Parallel)
mary means for many data-intensive scientific applicatior[®] engine, and Microsoft’s Dryad [3] engine. The Hadoop’s
For example, such applications as large-scale numeriedl arMapReduce engine is used for matrix computations, while
ysis, data mining, computational physics, and graph rengerBSP and Dryad engines are commonly used for graph com-
frequently require the intensive computation power of iratrputations. The main difference between BSP and Dryad is
inversion. Similarly, graph computations are key pringgffor that BSP gives high performance with good data locality,
various scientific applications such as machine learnimfgri while Dryad provides highly flexible computations with the
mation retrieval, bioinformatics, and social network gsa. fine control over the communication graph.

Fig. 1. The overall architecture of HAMA.
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in an atomic way, HAMA makes full use of Zookeeper,
Hadoop’s counterpart for Google Chubby [4]. In addition,

HAMA provides flexible data management interface, where

the default interface is HBase on top of Hadoop Distributdd@doop subprojects. Unlike traditional RDBMSes, HBase has
File System (HDFS). a column-oriented, semi-structured data structure, whaih

We summarize the contributions of HAMA as follows. € distributed over more than 1000 nodes with high scatgbili
To represent matrices on HBase, we have designed two
structures, a management table and an actual matrix steuctu
Ve named the management table as hama.admin.table and
pthe specific matrix structure as hama.matxixx. Table 1
. Scalability: Due to HAMA's compatibility, HAMA can and 2 |IIustr.ate the sc_hema of the management table and t.he
" S . actual matrix, respectively. The management table shown in
fully utilize large-scale distributed Internet infrasttures . -
: . Table 1 consists of three metadata column families, and an
and services such as Amazon EC2 without any modifi- . o e o
cation actual matrix_path” which indicates the specific matrix in

« Flexibility : To leverage the flexibility needed to suppor?-alble 2. In particular, *attribute:purpose” specifies wiestthe

: . . ; matrix is an actual matrix or it is an adjacent matrix represe
different computation patterns, HAMA provides simple_.. . .
. S ) . tation for a graph. The matrix data structure shown in Table 2
computation engine interface. Any computation enging

: o . iIncludes necessary metadata for storing column/row sliee, t
conforming to this interface can be plugged in ang

o Compatibility : HAMA can take advantage of all func-
tionalities of Hadoop and its related packages, sin
HAMA preserves compatibility with the existing Hadoo
interfaces.

out freelv. Currently. three computation enaines. name pe, and eigen pairs, as well as column vectors per row index
Y- Y P ! €ng ’ nlike “attribute:purpose” in Table 1, “attribute:typaf iTable
MapReduce, BSP, and Dryad, are available for use. S .
LT 2 represents whether the chosen matrix igparsematrix or
« Applicability : Primitives offered by HAMA can be ap- . . L

) ) o . ) densematrix. An algorithm can be optimized based on the

plied to various applications that require matrix and gra :
. . pe of a matrix.
computations. As a practical example, Me2day [5], , . . S .
. . S 7 Note that this matrix representation is effective in hamglli

famous social networking service in Korea similar t

: . mporary matrices when computing a job. This is because the
twitter, is now about to use HAMA to cluster users based | porarny puing aJ o .
mapper and the reducer can only look into the matrix withsalia
on a very large set of data.

) ’ ) ~ provided by the management table, while system components
Among three different computation engines currently piledi internally manipulate temporary matrices.
by HAMA, this paper focuses on the MapReduce engine

mainly used for matrix computations. Specifically, we shaf@. Multiplication of two matrices

our experience of implementing high-dimensional matrimeo  We propose two approaches to matrix multiplicatidger-
putations with the MapReduce framework and present oasitive approachand block approach The former is suitable
preliminary results. We also investigate the scalabilitttee for sparse matrices, while the latter is appropriate forséen
proposed approach in comparison to MPI. matrices with low communication overhead. Assume that
square matrix A and B are used for multiplication in the
following algorithms.

In many cases, complex scientific applications require-solu 1) lterative approach: The iterative approach is simple
tions of linear algebra. As a case study, this section dessri and naive. Initially, each map task receives a row index of
two basic primitivesmatrix multiplicationandfinding linear B as akey, and the column vector of the row asvalue
solution and goes into details of their implementations witffhen, it multiplies all columns ofi-th row of A with the
the MapReduce framework. received column vector. Finally, a reduce task collects/itie
product into the result matrix. The pseudo-code of the titexa
approach is illustrated in Algorithm 1.

In order to manipulate matrices on HDFS, we choose 2) Block approach:To multiply two dense matrices A and
HBase as a No-SQL database. The HBase project was origj-we should build the ¢ollectionTablé in the preprocessing
nally initiated by Powerset in 2007, modeling after Googllephase of MapReduce. The collectionTable is an 1-D repre-
Bigtable [6]. Now, it becomes one of the famous Apachsentation, transformed from the original 2-D represeotati

II. CASE STUDY: PRIMITIVES FOR LINEAR ALGEBRA

A. Representing matrices on HBase



Algorithm 1 Multiplication with the iterative approach

Algorithm 2 Multiplication with the block approach

I NPUT: key, /* the row index of B */
value, [* the colum vector of the row */
context |+ 1O interface (HBase) */

voi d map( | mut abl eByt esWitabl e key,

I NPUT: key, /* the blocklD */
value, [* two submatrices of A and B */
context |+ 1O interface (HBase) */

voi d map( | mut abl eByt esWitabl e key,

Result val ue, Context context)

{ {
double ij-th = currVector. get (key);
SparseVector nult [/ Multiplication =/

= new SparseVector(val ue).scale(ij-th); SubMatrix ¢ = a.mult(b); /* In-nmenory =/
context.wite(nKey, mult.getEntries()); context.wite(new Bl ockl D(key. get()),

} new Byt esWitabl e(c.getBytes()));

I NPUT: key, /* key by map task x/ }

value, [* value by map task =*/ I NPUT: key, /* key by map task =*/
context /* 10 interface (HBase) */ value, [+* value by map task */
context |+ 1O interface (HBase) */

Resul t val ue, Context context)

SubMatrix a = new SubMatri x(val ue, 0);
SubMatrix b = new SubMatri x(val ue, 1);

voi d reduce(lntWitable key,
It erabl e<MapWit abl e> val ues,
Cont ext cont ext)

voi d reduce(Bl ockl D key,
I terabl e<Byt esWitabl e> val ues,

{ Cont ext cont ext)
Spar seVect or sum = new Spar seVector(); {
for (MapWitable value : values) { SubMatrix s = null;
sum add( new Spar seVect or (val ue)); for (BytesWitable value : values) {
} SubMatrix b = new SubMatri x(val ue);
} if (s==null) { s =b; }

else { s = s.add(b);}

}

context.wite(...);

of two matrices. Each row of the collectionTable has twb
submatrices of Aik) and Bg,j) with the row index of

(n? x i) + (n * j) + k, where n denotes the row size of
matrix A and B. We call these submatriceblack Each map

task walks only on the collectionTable instead of the origi-
nal matrices, and thus it significantly reduces required dat
movement over the network. The following code shows the
block algorithm after preprocessing. Each map task reseivé is a symmetric matrix as we mentioned before.

a blocklD as akey, and two submatrices of A and B as its 1 1

valug and then multiplies two submatriced[i][j] = B[j][k]. f(z) = §AT~’C tgdr—b=Ar-b 3)
Afterward, a reduce task computes the summation of blocks

s[i][k]4+ = multipliedblocks. The pseudo-code of the block!" the gradient f'(x) sets to zero, we obtain Equation (1)
approach is depicted in Algorithm 2 we want to solve. That is, the solution of Equation (1) is a

critical point of Equation (2) under the assumption that Ais
r§ymmetric and positive-definite matrix. This is a simpleaide
behind the CG method.

Fundamentally, the CG method is similar to the Gradient
Descent with smoothing and adaptive step size. Like Gradien
Descent method, the CG method is able to find the solution
with high accuracy through iteratively adjusting the skarc
where b is a known vector, and A is a known, squardjrection and the step size until the gradient becomes zero.
symmetric, and positive-definite matrix as a pre-requisitech  Accordingly, estimating the appropriate search directol
a pre-requisite is not commonly found, but it is often usestep size is a key to find the solution quickly. For the CG,
for solving partial differential equations, structuraladysis, search direction is obtained from the conjugate direction
and circuit analysis. HAMA provides two methods for thisnethod, and the step size is simply calculated by the line
problem: Cramer’s rule method and Conjugate Gradient (C&arch method. In other words, the conjugate direction aaketh
method. The cramer’s rule method is used for dense matricBsds the search direction as a line, and then the line search
and the CG method is suitable for sparse matrices [7]. Thases to discover a minimum along the line.
methods are automatically chosen according to the type of arhe pseudo-code of the CG method is described in Al-
matrix. In this section, we briefly introduce the idea behingorithm 3, wherew, d, g, and alpha denote weight vector,
the CG algorithm, and describe how the CG algorithm worksnjugate direction, gradient, and step size, respegtivel
well on MapReduce. this algorithm, we use Fletcher form [7] in order to compute

CG method is based on the quadratic form as,

flz) = %ITAI —b'r+ec 2

C. Solving linear system with Conjugate Gradient approac

The next case study is to obtain the solutiah ¢f a linear
equation of

Ax =b (1)



search direction. Basically, we use matrix multiplicatiamd Algorithm 3 Conjugate Gradient method in HAMA
transpose primitives running in parallel, which are algead * | nvoked once by nested map interface */

; ; ; idinitialize() {
implemented in HAMA. In this way, we often reuse many©'

A . g = b.add(-1.0, A nult(x).getRow0));
primitives to implement a new feature. d=gmilt(-1): / d=-g */

Due to CG'’s iterative dependencies, we devisezbted- SparseMatrix q = A mult(d);
map interface as shown in Algorithm 3. The nested-map al pha = g.transpose(). nmult(d)
interface allows a single map task to iterate recursivel§l un / d.transpose().mult(q);

the termination condition is met. Its input is assigned fro x = x.add(d. nul t(al pha));

HBase directly without the shuffling process between mapper

and reducer. /* Using nested-nmap interface */

In practice, the CG method can be applied to various areagoi d map(| mmut abl eByt esWitabl e key,
For instance, in Artificial Intelligence, it is efficientlysed to Result val ue, Context context)
minimize the training error using the quadratic error nostri I« F .

. . ; . * For line search */
such as Euclidean function. Particularly, for MLP (Multiytex g = g.add(-1.0, mult(x).getRow(0));
Perception) [18], it is often used to optimize the weight al pha_new = g.transpose().mult(d)
vector of relevant networks. For various applications fogn / d.transpose().nmult(q);
in an iterative way as well as the CG method, MapReduce /* Find the conjugate direction «/
is often better with respect to scalability compared to othe 9 = %‘ x: :Ed)l) -add(d. milt (al pha));
computation alternatives such as MPI and OpenMP. In the g, pha- - g.trénspose().rrult(d)
next section, we show the scalability of matrix multiplicat / d.transpose(). mlt(q);
and the CG method with MapReduce and MPI as well as their /* Update x with gradient(al pha) */
overall performance. x = x.add(d. mul t(al pha));

[+ Term nation check method, such that
length of direction is sufficiently

The evaluation of HAMA has been performed on 16-nodes \S;QFL'e S; x is converged into fixed
TUSCI (TU Berlin SCI) Cluster [8]. Each ner consists of two it (checkTermination(d, x.getRow(0)))
Intel P4 Xeon processors and 1GB of main memory. In par- {
ticular, all nodes are connected with high-speed SCI (Btala context.wite(new Bl ockl D( key. get ()
Coherent Interface) network interface in a 2D torus topgplog new BytesWitabl e(x. get Byt es()
Since SCI interconnections provide very low network latenc
it can mitigate the data locality problem of Hadoop [1].

In this evaluation, we compare three different versions of
matrix multiplication and CG algorithm with 30% sparse
matrices, varying the matrix dimension from 500 to 5000. The
first version uses the MapReduce engine (Hadoop MapReduce

0.20.0), and the second uses a variant of the MapRedyggere T denotes the execution time. The scaleup can be
engine called HPMR [1] which supports prefetching and préiewed as a metric which indicates the scalability. Theesgal
shuffling. The last version is the MPI implementation foyg inversely proportional to the scalability.

which we used Compaq Extended Math Library (CXML) [18] _. L )
(version 5.2, previously known as DXML) of Hewlett-Packar(fI Figure 2(2), (b) show the average execution time (confidence

. vel = 95%) and its scaleup of matrix multiplication with
(HP).’ based on LAPACK and B!‘AS' The first qnd sec_on%?n iterative method, and Figure 2(c), (d) depict the average
version belong to the computation engine family provide

. . ) NP . .
by HAMA. For MapReduce and HPMR, we configured tha(%xec_unon time (confidence Ievel_ 95%) over one iteration
L ) -and its scaleup of the CG algorithm. As we expected, MPI

HDFS maintains four replicas for each data block, whose siz : ’ :
ows the lowest execution time result among all versions

Is 128 MB' The number of_mappe_zr and reduce_r 's 16 a'?d %\}ving to its light-weight characteristics of the library we
respectively. For MPI (version mpich2), we assigned a SN%\sed. However its scaleup shows more sharp increase and
task for each node. We left a single processor idle for each . . .

; S always above than others, especially, when the dimension
node in order to maintain a redundancy for fault tolerance.

. . . . IS larger than 1000. This scalability problem is due to its
Figure 2 illustrates the elapsed execution time and thespal . . L .
) . e o . dramatic increase in synchronous communications required
of performing matrix multiplication with iterative methahd

CG algorithm, varying the matrix dimension from 500 to 500({or maintaining iterative dependencies. Although the ekiea

The scaleup means the normalized speedup by the smal thF of MapReduce and HPMR is slower than that of MPI,

dimension with fixed nodes. such that e p_erfornjance gap with MPI is gradually shrlnkm_g after
the dimension becomes larger than 1000 as shown in Figure

T (dimension) 2(a), (c). Especially, HPMR, a variant of MapReduce for
T(500) ) high performance, outperforms the native MapReduce with

IIl. EVALUATIONS

),
)
context.wite(new Bl ockl D(key. get()),

nul I');

scaleup(dimension) = log(
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Fig. 2. The comparison of average execution time and scaletipMultiplication and CG.

the smoothly increased curve. live node, and resumes the execution. However, MPI conginue

In practice, it is possible that one or more nodes experierige execute regardless of the slow execution of node. The
a fault or heavy overload during the execution time. Fakmdahl's Law gives the insight that the overall executiondi
evaluating this situation, we explicitly created a sitoati increases due to the single slow task.
of a single node failure and overloaded a node randomly.
Figure 3 illustrates the average elapsed execution timefand
average delayed time compared to the normal execution timepe have proposed the high-dimensional matrix/graph com-
(confidence level = 95%) shown in Figure 2, when a singlsutation framework called HAMA. HAMA provides compat-
node is overloaded randomly. Since MPI shows abnormisllity with Hadoop, scalability for the large problem sjze
execution behaviors on a single node failure, we compare fiexibility with the plug-in engine interface, and applidtity
average execution time only when a single node is overlaadést various scientific applications. In particular, thréuthe

As depicted in Figure 3(a), HAMA maintains the good perease study on linear algebra, we have shown that the matrix
formance compared to MPI, and especially HPMR of HAMAdrimitives running on the MapReduce engine is easy to use.
excels MPI where the dimension is larger than 4000. In addiinally, we demonstrated that HAMA shows better scalgpbilit
tion, Figure 3(b) shows significant performance degradaifo than the MPI implementation, maintaining relatively good
the MPI implementation compared to others. This is becaugerformance. Especially, in the case where a node is facing
HAMA takes advantage of fault-tolerance facility such athe fault, HAMA gives better performance than MPI as the
speculative execution of MapReduce which automaticalty haproblem size becomes larger.
dles the failure without programmer’s concerns. Additipna  However, MapReduce is not always appropriate for arbitrary
HPMR has an advanced fault-tolerance functionality called algorithms. That is why we provide the flexible computa-
LATE [1]; when a node crashes or shows slow responses, timn engine interface. The graph traversal algorithm sugh a
MapReduce engine reassigns this straggler task to anatsier Breadth First Search (BFS) is a counterexample against the

IV. CONCLUSION



MapReduce algorithm [9]. As the next step, we plan to propose
several graph computation primitives with our BSP engine.
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