
NTC (Neural Text Categorizer): Neural Network for Text
Categorization

Taeho Jo

SITE, University of Ottawa
tjo018@site.uottawa.ca

Abstract
This research proposes a new neural network for text categorization which uses
alternative representations of documents to numerical vectors. Since the proposed neural
network is intended originally only for text categorization, it is called NTC (Neural Text
Categorizer) in this research. Numerical vectors representing documents for tasks of text
mining have inherently two main problems: huge dimensionality and sparse distribution.
Although many various feature selection methods are developed to address the first
problem, the reduced dimension remains still large. If the dimension is reduced
excessively by a feature selection method, robustness of text categorization is degraded.
Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to
the second problem. The goal of this research is to address the two problems at same time
by proposing a new representation of documents and a new neural network using the
representation for its input vector.

1. Introduction
Text categorization refers to the process of assign a category or some categories among
predefined ones to each document, automatically. Text categorization is a pattern
classification task for text mining and necessary for efficient management of textual
information systems. In the academic world, research on text categorization has been
progressed very much, and we will survey it in next section. In the industrial world, text
categorization systems were already developed as an independent system or a module for
textual information systems [Jackson and Mouliner 2002]. Although research and
development on text categorization have been progressed like this, we need further
research on it to improve techniques and implementations of text categorization.

There are two types of approaches to text categorization: rule based and machine
learning based approaches [Sebastiani 2002]. Rule based approaches mean ones where
classification rules are defined manually in form of if-then-else, and documents are
classified based on the rules. For example, classification rules are defined as, “business
and company company” meaning that if a document includes the two words ‘business’
and ‘company’, it is classified into the category, ‘business’ [Jackson and Mouliner 2002].
This class of approaches has high precision but poor recall, because of its poor flexibility.
Machine learning based approaches mean ones where classification rules or equations are
defined automatically using sample labeled documents. This class of approaches has a
much higher recall but a slightly lower precision than rule based approaches. In addition
to their poor flexibility, rule based approaches require time consuming manual jobs for
building classification rules. Therefore, machine learning based approaches are replacing
rule based ones for text categorization. This research focuses on machine learning based
approaches to text categorization, discarding rule based ones.

Typical machine learning based approaches to text categorization are K Nearest
Neighbor, Naïve Bayes, Support Vector Machine, and Back Propagation. They are used
not only for text categorization, but also for any pattern classification problem, such as
image classification, protein classification, and character recognition. Although there are
other approaches than the five approaches, the four approaches are most typical and
popular. In section 2, we will present previous cases of applying the four approaches to
text categorization. In order to apply one of the four approaches to any pattern
classification problem, raw data should be encoded into numerical.

Like any other pattern classification problem, in text categorization, it is true that
documents given as raw data should be encoded into numerical vectors. The process will
be described in detail in section 3. This strategy of encoding documents leads to two main
problems: huge dimensionality and sparse distribution. In spite of using feature selection
methods, a reduced dimension of numerical vectors representing documents still remains
large. Excessive reduction of the dimension of numerical vectors using a feature selection
method degrades the robustness of text categorization. The second problem, sparse
distribution, leads to poor discrimination among numerical vectors for categorizing them.
Although Support Vector Machine is very tolerant to huge dimensionality, it is not so to
the second problem. Therefore, the goal of this research is to address the two problems at
same time.

The idea of this research is to propose an alternative representation of documents to
numerical vectors and a new supervised neural network as an approach to text
categorization using the alternative representation in order to avoid the two problems. In
this article, the alternative representation of documents is called string vector, and the
proposed neural network is called NTC (Neural Text Categorizer). A sting vector is
defined as a finite ordered set of words; it consists of words as its element, instead of
numerical values. Since string vectors representing documents are classified robustly
with their smaller dimension than numerical vectors in using the proposed neural network,
string vectors are regarded as more compact representation of documents for text
categorization. Additional advantage of string vectors is to provide more transparency in
classification; it is possible to trace why documents are classified into such labels.

The architecture of NTC consists of three layers: input layer, learning layer, and output
layer. Like Perceptron, the input layer is connected directly with the output layer, and the
learning layer determines synaptic weights between the input layer and the output layer.
The input layer corresponds to an input vector given as a string vector, and the learning
layer and the output layer correspond to predefined categories. Each node in the learning
layer has its own table consists of words and their weights indicating their membership of
the corresponding category. Learning of NTC is the process of optimizing these weights
in each table. NTC classifies unseen documents by computing output values by summing
corresponding weights of string vectors.
The advantage of the proposed neural network is that NTC can classify documents with
its sufficient robustness with its smaller input size and iterations of learning than
traditional approaches using numerical vectors. Therefore, NTC solves the first problem,
huge dimensionality, completely. Since sparse distribution can not exist in string vectors,
the second problem is also addressed. Another advantage of NTC is that it provides
transparency about its classification; it provides answer to why it classifies an unseen
document into a particular category.

This article consists of six sections including this section. In section 2, we explore
relevant previous research and consider its limitations in text categorization. In section 3,
we describe in detail the process of encoding documents into numerical vectors and string
vectors with the two subsections. In section 4, we describe the proposed neural network,
called NTC, in detail, with respect to its architecture, learning process, and properties. In
section 5, we compare the proposed neural network with other traditional approaches in
text categorization, using three test beds. In section 6 as the conclusion, we will mention
the significance of this work, and present directions of further research.

2. Previous Works
In this section, we will survey previous works relevant to this research, and point out
their limitations. There exist other kinds of approaches to text categorization than
machine learning based ones: heuristic and rule based approaches. Heuristic approaches
were already applied to early commercial text categorization systems [Jackson and
Mouliner 2000]. However, we count out the kind of approaches in our exploration, since
they are rule of thumbs. Since rule based approaches have poor recall and require a time
consuming job of building rules manually as mentioned in the previous section, they are
not covered in this article, either. Therefore, this article counts only machine learning
based approaches to text categorization considered as state of the art ones.

Typical machine learning algorithms applied traditionally to text categorization are
KNN (K Nearest Neighbor), NB (Naïve Bayes), SVM (Support Vector Machine), and BP
(Back Propagation). The four approaches to text categorization have been used more
popularly in previous literatures on text categorization than any other traditional
approaches. Among them, the simplest approach is KNN. KNN is a classification
algorithm where objects are classified by voting several labeled training examples with
their smallest distance from each object. KNN was initially applied to classification of
news articles by Massand et al, in 1992 [Massand et al 1992]. Yang compared 12
approaches to text categorization with each other, and judged that KNN is one of
recommendable approaches, in 1999 [Yang 1999]. KNN is evaluated as a simple and
competitive algorithm with Support Vector Machine for implementing text categorization
systems by Sebastiani in 2002 [Sebastiani 2002]. Its disadvantage is that KNN costs very
much time for classifying objects, given a large number of training examples because it
should select some of them by computing the distance of each test object with all of the
training examples.

Another popular and traditional approach to text categorization is NB. Differently from
KNN, it learns training examples in advance before given unseen examples. It classifies
documents based on prior probabilities of categories and probabilities that attribute
values belong to categories. The assumption that attributes are independent of each other
underlies on this approach. Although this assumption violates the fact that attributes are
dependent on each other, its performance is feasible in text categorization [Michell 1997].
Naïve Bayes is used popularly not only for text categorization, but also for any other
classification problems, since its learning is fast and simple [Duda et al 2001].

In 1997, Mitchell presented a case of applying NB to text categorization in his textbook
[Mitchell 1997]. He asserted that NB was a feasible approach to text categorization,
although attributes of numerical vectors representing documents were dependent on each
other; this fact contradicts with the assumption underlying in NB. In 1999, Mladenic and

Grobellink evaluated feature selection methods within the application of Naïve Bayes to
text categorization [Mladenic and Grobelink 1999]. Their work implied that NB is one of
standard and popular approaches to text categorization. Androutsopoulos et al adopted
NB for implementing a spam mail filtering system as a real system based on text
categorization in 2000 [Androutsopoulos, et al. 2000]. It requires encoding documents
into numerical vectors for using NB to text categorization.

Another popular and traditional approach to text categorization is SVM. Recently, this
machine learning algorithm becomes more popular than the two previous machine
learning algorithms. Its idea is derived from a linear classifier, Perceptron, which is an
early neural network. Since the neural network classifies objects by defining a hyper-
plane as a boundary of classes, it is applicable to only linearly separable distribution of
training examples. The idea of SVM is that if a distribution of training examples is not
linearly separable, these examples are mapped into another space where their distribution
is linearly separable, as illustrated in the left side of figure 1. SVM optimizes the weights
of the inner products of training examples and its input vector, called Lagrange
multipliers [Cristiani et al 2000], instead of those of its input vector, itself, as its learning
process. It defines two hyper-planes as a boundary of two classes with a maximal margin,
as illustrated in the left side of figure 1. Refer to [Hearest 1998] or [Cristiani et al 2000],
for more detail description on SVM.

)(1xψ

)(2xψ

1x

2x

Figure 1. Mapping Vector Space in SVM

The advantage of SVM is that it is tolerant to huge dimensionality of numerical vectors;

it addresses the first problem. Its advantage leads to make it very popular not only in text
categorization, but also any other classification problems [Cristinani et al 2000]. In 1998,
it was initially applied to text categorization by Joachims [Joachims 1998]. He validated
the classification performance of SVM in text categorization by comparing it with KNN
and NB. Drucker et al adopted SVM for implementing a spam mail filtering system and
compared it with NB in implementing the system in 1999 [Drucker et al 1999]. They
asserted empirically that SVM was the better approach to spam mail filtering than NB. In
2000, Cristianini and Shawe-Taylor presented a case of applying SVM to text
categorization in their textbook [Cristianini and Shawe-Taylor 2000]. In 2002, Sebastiani
asserted in his survey paper that SVM is most recommendable approach to text
categorization by collecting experimental results on the comparison of SVM with other
approaches from previous works [Sebastiani 2002]. In spite of the advantage of SVM, it
has two demerits. One is that it is applicable to only binary classification; if a multiple
classification problem is given, it should be decomposed into several binary classification
problems for using SVM. The other is that it is fragile to the problem in representing

documents into numerical vectors, sparse distribution, since the inner products of its input
vector and training examples generates zero values very frequently.

The third popular and traditional approach to text categorization is BP. It is most
popular supervised neural network and used for not only classification tasks but also
nonlinear regression tasks [Haykin 1994][Hagan et al 1995]. It is also derived Perceptron,
together with SVM. When a distribution of training examples is not linearly separable, in
SVM, the given space is changed into another space where the distribution is linearly
separable, whereas in back propagation, a quadratic boundary is defined by adding one
more layer, called hidden layer [Haykin 1994][Hagan et al 1995], as illustrated in the
right side of figure 1. More detail explanation about back propagation is included in
[Haykin 1994] or [Hagan et al 1995].

In 1995, BP was initially applied to text categorization by Wiener in his master thesis
[Wiener 1995]. He used Reuter 21578 as the test bed for evaluating the approach to text
categorization and shown that back propagation is better than KNN in the context of
classification performance. In 2002, Ruiz and Srinivasan applied continually back
propagation to text categorization [Ruiz and Srinivasan 2002]. They used a hierarchical
combination of BPs, called HME (Hierarchical Mixture of Experts), to text categorization,
instead of a single BP. They compared HME of BPs with a flat combination of BPs, and
observed that HME is the better combination of BPs. Since BP learns training examples
very slowly, it is not practical, in spite of its broad applicability and high accuracy, for
implementing a text categorization system where training time is critical.

Research on machine learning based approaches to text categorization has been
progressed very much, and they have been surveyed and evaluated systematically. In
1999, Yang evaluated 12 approaches to text categorization including machine learning
based approaches directly or indirectly in text categorization [Yang 1999]1. She judged
the three approaches, LLSF (Linear Least Square Fit), K Nearest Neighbor, and
Perceptron, worked best for text categorization. In 2002, Sebastiani surveyed and
evaluated more than ten machine learning based approaches to text categorization
[Sebastiani 2002]. He asserted that Support Vector Machine is best approach to text
categorization with respect to classification performance. All approaches which were
surveyed and evaluated in these literatures require encoding documents into numerical
vectors in spite of the two problems.

We explored and presented previous cases of applying one of the four traditional
machine learning algorithms to text categorization. Although the traditional approaches
are feasible to text categorization, they accompany with the two main problems from
representing documents into numerical vectors. In the previous works, dimension of
numerical vectors should reserve, at least, several hundreds for the robustness of text
categorization systems. In order to mitigate the second problem, sparse distribution, a
task of text categorization was decomposed into binary classification tasks in applying
one of the traditional approaches. This requires classifiers as many as predefined
categories, and each classifier judges whether an unseen document belongs to its
corresponding category or not.
There is a previous trial to solve the two problems. In 2002, Lodhi et al proposed a string
kernel for applying Support Vector Machine to text categorization [Lodhi et al 2002]. In

1 In her study, direction evaluation means to evaluate approaches by performing experiments, while indirect
evaluation means to evaluate them by collecting experimental results from other literatures.

their solution, documents as raw data are used directly for text categorization without
representing them into numerical vectors. String kernel is a function computing an inner
product between two documents given as two long strings. An additional advantage of
the solution is to process documents independently of a natural language in which
documents are written. However, their solution was not successful in that it took far more
time for computing string kernel of two documents and the version of SVM using the
string kernel was not better than the traditional version. As presented in section 5, this
research will be a successful attempt to solve the two problems by proposing string
vectors and a new neural network.

3. Document Representation
Since documents are unstructured data by themselves, they can not be processed directly
by computers. They need to be encoded into structured data for processing them for text
categorization. This section will describe the two strategies of encoding documents with
the two subsections: the traditional strategy and the proposed strategy. The first
subsection describes the former and points out its demerits, and the second subsection
describes the latter and mentions its merits.

3.1. Numerical Vectors
A traditional strategy of encoding documents for tasks of text mining, such as text
categorization is to represent them into numerical vectors. Since input vectors and weight
vectors of traditional neural networks such as back propagation and RBF (Radial Basis
Function) are given as numerical vectors, each document should be transformed into a
numerical vector for using them for text categorization. Therefore, this subsection will
describe the process of encoding documents into numerical vectors and what are their
attributes and values.

Figure 2 illustrates the process of extracting feature candidates for numerical vectors
from documents. If more than two documents are given as the input, all strings of
documents are concatenated into a long string. The first step of this process is
tokenization where the string is segmented into tokens by white space and punctuations.
In the second step, each token is stemmed into its root form; for example, a verb in its
past is transformed into its root form, and a noun in its plural form is transformed into its
singular form. Words which function only grammatically with regardless of a content are
called stop words [Frants et al 1997], and they correspond to articles, conjunctions, or
pronouns. In the third step, stop words are removed for processing documents more
efficiently and reliably for text categorization. Through the three steps illustrated in
figure 2, a collection of words are generated as feature candidates.

Tokenization

Stemming and
Exception Handling

Remove Stop Words

Document or Documents

Feature
Candidates

Figure 2. The process of encoding a document into a bag of words

Since the number of the generated feature candidates is usually too big, using all of them
is not feasible as features of numerical vectors. Therefore, only some of them are used as
features of numerical vectors for efficiency. A scheme of defining criteria for selecting
some of them as features is called feature selection method [Mladenic and Grobelink
1999]. Generally, features are selected from the generated collection by their frequencies
in the corpus. Therefore, candidates with highest frequencies are used as features of
numerical vectors. The number of selected candidates as features becomes the dimension
of numerical vectors. There are other feature selection methods than the frequency based
one, and they are described in detail in [Mladenic and Grobelink 1999] and [Sebatiani
2002]. However, although only some of the candidates are used as features, the number
of features is still large for robust text categorization2.

The selected features are given as attributes of numerical vectors and numerical
information about attributes become elements of numerical vectors. In this article, we
mention the three ways of defining elements as the representative ones, although others
may exist. The first way is to assign a binary value indicating absence or presence of the
corresponding word in the given document; one indicates its presence and zero indicates
its absence. The second way is to define elements as frequencies of corresponding words
in the given document; the elements become integers which are greater than or equal to
zero. The third way is to assign weights computed from equation (1) to elements of
numerical vectors; elements are real values.

)1)(log)(log()(22 +−= kkiki wdfDwtfwweight (1)

where)(ki wtf is the frequency of the word,
kw , D is the total number of documents in the

corpus, and)(kwdf is the number of documents including the word,
kw in the given corpus.

Note that the first and second way does not require the reference to a corpus, where as the
third way requires the reference for computing elements of numerical vectors using
equation (1).

Note that numerical vectors encoding documents have two main problems as mentioned
in section 1. The first problem is that the dimension of numerical vectors is still large.
This problems leads to high cost of time for processing each encoded document for

2 Generally, several ten thousands feature candidates are generated from a particular corpus. Among them,
several hundreds candidates are used as features. Therefore, the dimension of numerical vectors is several
hundreds and is still high.

training a classifier and to requirement of a very large number of training examples
proportionally to the dimension. The second problem is that each numerical vector
includes zero values, dominantly. Since the discrimination among numerical vectors over
categories is lost, categorization performance is degraded.

3.2. String Vectors
An alternative strategy of encoding documents for text categorization is to represent them
into string vectors. In this subsection, we describe this strategy and its advantage in detail.
However, this strategy is applicable to only NTC, while the previous one is applicable to
any traditional machine learning algorithm.

A string vector is defined as a finite ordered set of words. In other words, a string
vector is a vector whose elements are words, instead of numerical values. Note that a
string vector is different from a bag of words, although both of them are similar as each
other in their appearance. A bag of words is an infinite unordered set of words; the
number of words is variable and they are independent of their positions. In string vectors,
words are dependent on their positions as elements, since words correspond to their
features. Features of string vectors will be described in detail in the next paragraph.

Features of string vectors are defined as properties of words to the given document. The
features are classified into the three types: linguistic features, statistical features, and
positional features. Linguistic features are features defined based on linguistic knowledge
about words in the given document: the first or last noun, verb, and adjective, in a
paragraph, title, or full text. Statistical features are features defined based statistical
properties of words in the given documents; the highest frequent word and the highest
weighted word using equation (1). Positional features are features defined based on
positions of words in a paragraph or the full text: a random word in the first or last
sentence or paragraph, or the full text. We can define features of string vectors by
combining some of the three types, such as the first noun in the first sentence, the highest
frequent noun in the first paragraph, and so on.

We can define features of string vectors in various ways as mentioned above, but in this
work, features of string vectors are defined based on only frequencies of words for
implementing easily and simply the module of encoding documents into string vectors. A
d dimensional string vector consists of d words in the descending order of their
frequencies in the given entire full text; the first element is the highest frequent word, the
second element is the second highest frequent word, and the last element is the d the
highest frequent word. Figure 3 illustrates the process of encoding a document into its
string vector with the simple definition of features. In the first step of figure 3, a
document is indexed into a list of words and their frequencies. Its detail process of the
first step is illustrated in figure 2. If the dimension of string vectors is set to d , d highest
frequent words are selected from the list, in the second step. In the third step, the selected
words are sorted in the descending order of their frequencies. This ordered list of words
becomes a string vector representing the document given as the input.

Document

Indexing

Selecting

Sorting

String Vector

Figure 3. The process of mapping a bag of words into a string vector

This strategy of encoding documents for text categorization addresses the two main

problems from the previous strategy. As presented in section 5, NTC using 50
dimensional string vectors is compared with other traditional approaches using 500
dimensional numerical vectors. The classification performance of NTC is comparable
with the best traditional approach with much smaller input size and number of iterations.
The experiments show that string vectors represent documents more compactly and
efficiently than numerical vectors; the first problem is addressed. Since sparse
distribution can not exist in string vectors, the second problem is also addressed.

Another advantage of string vectors is that string vectors represent documents more
transparently than numerical vectors. Since each element of string vectors is symbolic
data, it is possible to guess the content of the document by its surrogate; this is more user-
friendly representation of documents than numerical vectors. Therefore, it is easier to
trace why each unseen document is classified into a particular label in string vectors, than
in numerical vectors.

4. NTC (Neural Text Categorizer)
This section describes the proposed neural network, NTC, in detail, with respect to its
architecture, training, classification, and properties. The proposed neural network follows
Perceptron in that synaptic weights are connected directly between the input layer and the
output layer, and the weights are updated only when each training example is
misclassified. However, note that NTC is different from Perceptron in context of its detail
process of learning and classification, since it uses string vectors as its input vectors,
instead of numerical vectors. The learning layer given as an additional layer to the input
and the output layer is different from the hidden layer of back propagation with respect to
its role. The learning layer determines synaptic weights between the input and the output

layer by referring to the tables owned by learning nodes. The learning of NTC refers to
the process of optimizing weights stored in the tables.

Figure 4 illustrates the architecture of the proposed neural network, NTC. It consists of
the three layers: input layer, output layer, and learning layer. The input layer receives an
input vector given as a string vector. The learning layer determines weights between the
input and the output layer corresponding to words of the given input vector by looking up
in the tables owned by learning nodes. The output layer generates the categorical scores
indicating memberships of the string vector in categories as the output. The conditions of
designing the proposed neural network, NTC, for text categorization are defined as
follows.

• The number of the input nodes should be identical to the dimension of string
vectors representing documents.

This layer receives an input vector given as a string vector, so each node corresponds
to each word in the string vector.
• The number of the learning nodes should be identical to the number of predefined

categories.
Nodes of this layer own tables corresponding to predefined categories, and determine
weights between the input and output layer, to each word in the input vector.
• The number of the output nodes should be identical to the number of predefined

categories.
This layer generates categorical scores as the output, and they correspond to
predefined categories.

………

……… Input Layer

……… Output Layer

Learning Layer

Determine value of the weight

Weight between input and output layer

Figure 4. The Architecture of NTC

The first step of NTC is the initialization of weights which is the process of filling the

tables which are empty initially. Each table corresponds to a predefined category, and it
consists of entries. Each entry consists of a word and its weight. In this step, each weight
is filled with the frequency of the corresponding word in the category corresponding to
the table. Therefore, all tables owned by the learning nodes are constructed in this step.
The learning of NTC follows its initialization. An input vector given as a string vector is
denoted by []dttt ,...,, 21=x , where it , di ≤≤1 , is a word given as an element of the
string vector, x , and d is the dimension of the string vector, x . A set of the given
predefined categories is denoted by []

C
cccC ,...,, 21= . The weigh, jiw denote the weight

connected between an input node, i , and an output node corresponding to the category,
jc Cj ≤≤1 . The value of the weight, jiw , is defined, using equation (2),

=
otherwise 0

 tablein the word theis thereif)(ij

ji

ttable
w (2)

where jtable denotes the table owned by the learning node corresponding to the category,

jc and)(ic ttable means the weights of the word, it , stored in the table, jtable . The
weight, jiw , means the membership of the word, it , in the category, jc . Therefore, if
there is the word, it , in the table, jtable , the weight, jiw , is fetched from the table, jtable .
Otherwise, the weight, jiw becomes zero.

We compute the value of the output node, jo , the output node corresponding to the
category, jc , using equation (3),

∑
=

=
d

i
jij wo

1

(3).

The value of jo means the membership of the given input vector, x in the category, jc .
Since values of output nodes are combined by linear combination of weights illustrated in
equation (3), the proposed neural network is similar as Perceptron. This is the first
property shared with Perceptron.

As mentioned above, the learning of NTC is the process of optimizing weights between
the input and output layer to minimize classification error in training examples. This
learning is performed interactively to each training example. Each string vector in the
training set has its own target label, jc . If its classified category, kc is identical to its
target category, c , the weights does not change, as expressed in equation (4),

0,0 , if =∆=∆= jikikj wwcc (4).
Otherwise, weights are adjusted to reinforce weights for its target category and to inhibit
weights for its misclassified category, to minimize the classification error, as illustrated in
equation (5),

jijikikikj wwwwcc ηη =∆−=∆≠ , , if (5)

where η is the learning rate given as a parameter, like any other neural networks, such as
Perceptron, back propagation, and Kohonen Networks. This learning is repeated until the
weights converge.
Figure 5 illustrates the process of learning sample documents and classifying unseen ones
using NTC. A collection of sample labeled documents is given as the input, and the
learning rate and the number of iterations are given as the parameters of NTC. In its first
step, NTC initializes the weights stored in the tables owned by the learning nodes. For
each sample labeled document, it is classified using equation (3) and the weights are
updated using equation (5) whenever it is misclassified. This process is repeated with the
fixed number, given as a parameter. After training NTC, unseen documents are classified
by encoding them into string vectors, computing values of output nodes with the
optimized weights using equation (3), and assigning the category corresponding to the
output node with the highest value to each unseen document.

Figure 5. Process of training NTC and classifying unseen documents

Since NTC uses string vectors as its input vectors, the two main problems could be

naturally avoided at same time. Each table owned by its corresponding learning node
stores classification rules grained by training the NTC. These rules provide the basis of
classifying documents more transparently than traditional machine learning algorithms
using numerical vectors. Although string vectors used as input vectors in the proposed
neural network address the two main problems, operations on string vectors are more
restricted than those on numerical vectors. For example, we do not discover the method
for finding a string vector representing a collection of string vectors, corresponding to a
mean vector and a covariance matrix in numerical vectors. Therefore, NTC can not be
trained in batch mode, because a mean vector can not be computed in string vectors.

5. Experimental Results
This section concerns experimental results of evaluating traditional and proposed
approaches to text categorization on three test beds. In the experiments, five approaches,
SVM, NB, KNN, Back Propagation, and NTC are evaluated as the approaches to text
categorization, and three collections of news articles, Newspage.com, 20NewsGroups,
and Reuter 21578, are used as the test beds of text categorization. In two of three test
beds, the five approaches are evaluated both with decomposing text categorization into
binary classification problems and without decomposing it.

In the experiments, documents are represented into string vectors for using NTC and
numerical vectors for using the other methods. The dimensions of numerical vectors and
string vectors representing documents are set as 500 and 50, respectively. In encoding
documents into numerical vectors, most frequent 500 words from a given training set for
each problem are selected as their features. The values of the features of numerical
vectors are binary ones indicating the absence or presence of words in a given document;

Classifier Training
Input: A Series of Sample Documents, Learning Rate, and Iteration Number
Step 1: Encode these sample documents into string vectors
Step 2: Design the architecture of NTC
Step 3: Initialize weights in each learning node with its document frequency within its
corresponding category
Step 4: Repeat step 3-1 with the number of iteration
Step 4-1: For each encoded sample document
Step 4-1-1: Compute the values of output nodes of the encoded document with the current weight
using the equation (3)
Step 4-1-2: Classify each training string vector into the category corresponding to the output node
with its highest value
Step 4-1-3: If its classified category is different from its target category, update weights to every
misclassification using the equation (5)
Output: Optimized weights in each learning node

Document Classification
Input: An unseen document and the optimized weights in each learning node
Step 1: Encode the unseen document into a string data
Step 2: Compute the values of output nodes of the encoded document with the current weight
using the equation (5)
Step 3: Classify the unseen string vector into the category corresponding to the output node with
its highest value
Output: its classified label

this is for using Naïve Bayes. In encoding documents into string vectors, the most
frequent 50 words are selected from a given document and sorted in the descending order
of their frequencies as values of its corresponding string vector.

The parameters of the five approaches involved in this experiment are set by tuning
them with a validation set, which is constructed by selecting 600 documents randomly
from training documents, spanning the three test beds. Table 10 shows the definition of
the parameters which is obtained through this tuning. With the parameters defined in
table 10, the five approaches to text categorization will be applied to the three test beds.

Table 1. Parameters of the Five Approaches

Approaches to Text
Categorization

Definition of Parameters

SVM Capacity = 4.0
KNN #nearest number = 3
NB N/A
Back Propagation Hidden Layer: 10 hidden nodes

Learning rate: 0.3
#Iteration of Training: 1000

NTC Learning rate: 0.3
#Iteration of Training: 100

5.1. NewsPage.com
The first set of this experiment pursues the evaluation of the five approaches on the test
bed, Newspage.com, with and without the decomposition. This test bed consists of 1,200
news articles in the format of plain texts built by copying and pasting news articles
manually and individually in the web site, www.newspage.com. Table 2 specifies the
predefined categories, the number of documents of each category, and the partition of the
test bed into training set and test set. As shown in table 11, the ratio of training set to test
set is set as 7:3. Here, this test bed is called Newspage.com, based on the web site, given
as its source.

Table 2. Training Set and Test Set of Newspage.com
Category Name Training Set Test Set #Document

Business 280 120 400
Health 140 60 200
Law 70 30 100

Internet 210 90 300
Sports 140 60 200
Total 840 360 1200

The task of text categorization on this test bed is decomposed into five binary

classification problems, category by category. In each binary classification problem, a
classifier answers whether an unseen document belongs to its corresponding category, or
not. Table 3 shows the definition of training sets of the predefined categories. In table 3,
‘positive’ indicates that documents belong to the corresponding category and such

documents will called positive documents, while ‘negative’ indicates that documents do
not and such documents will be called negative documents. For each training set, all of
documents not belonging to its corresponding category are allocated as negative
documents. For each test set, negative documents are allocated as many as positive
documents defined in the third column of table 2.

Table 3. The Allocation of Positive and Negative Class in Training Set of each Category

Category Name Positive Negative Total
Business 280 560 840
Health 140 700 840
Law 70 770 840

Internet 210 630 840
Sports 140 700 840

Figure 6 presents the result of evaluating the five approaches on the test bed,

Newspage.com, with a graph. On x-axis of the graph, the left group indicates the micro-
averaged F1, the right group indicates the macro-averaged F1, and each bar within each
group indicates one of the five approaches. The y-axis of the graph indicates the F1-
measure which weight recall and precision, equally. The result of this evaluation shows
that back propagation works best among the approaches with decomposition of the task
of text categorization on this test bed into five binary classification problems. Although
NTC is the second best approach to back propagation, it is comparable and competitive to
back propagation, as shown in figure 6.

0

0.2

0.4

0.6

0.8

1

F1

Micro Macro

SVM
KNN
NB
BP
NTC

Figure 6. Result of evaluating five Text Classifiers in Newspage.com with decomposition

Figure 7 shows the result of evaluating the four classifiers except SVM without

decomposition on this test bed. The reason of excluding SVM in this evaluation is that
SVM is applicable only to a binary classification problem. Without decomposition, a
classifier answers one of the five categories presented in table 11 and 12, instead of yes
or no. Y-axis of figure 7 indicates accuracy which is the portion of correctly classified
test documents to all of them, instead of F1-measure. This result shows that NTC is the
best text classifier among the four approaches on this test bed without decomposition.

0

0.2

0.4

0.6

0.8

1

Acc

KNN
NB
BP
NTC

Figure 7. Result of evaluating four Text Classifiers in Newspage.com without decomposition

Although NTC is not better than back propagation in this test bed with respect to its

performance, among the five approaches, NTC is preferable for implementing the module,
‘classifier training’ of DDO systems of the four-phase scenario, with two reasons. The
first reason is that time taken for training a classifier is more critical than accuracy for the
implementation. In the four-phase-scenario, training a classifier in the third phase leads to
delay between creation mode and maintenance mode. During this period, an information
system devotes itself to training a classifier. Although back propagation is a slightly
better approach than NTC with respect to its performance, it takes time for training itself
approximately fifty times that for training NTC. NTC is comparable and competitive with
back propagation in spite of its tenth smaller dimension and iterations of training. The
second reason is that NTC is more transparent than the others in classifying documents.
For example, in back propagation, there is no way to find answer to the question, “why is
an unseen document classified into a particular category?” Since NTC uses string vectors
given as symbolic data as its input vector, it is possible to trace process of classifying
unseen documents to answer the question. Whenever classifying an unseen document, we
can show weights of elements given as words category by category to support why the
document is classified into such a category.

5.2. 20NewsGroups
The second experiment is to evaluate the five approaches on another test bed, called
‘20NewsGroups’. This test bed is obtained by downloading it from the web site,
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html. This test bed consists
of 20 categories and 20,000 documents; each category contains 1,000 documents. This
test bed is partitioned into the training set and the test set with the ratio, 7:3; there are 700
training documents and 300 test documents per each category. Hence, 20,000 documents
are partitioned into 14,000 training documents and 6000 test documents.

In this experiment, the task of text categorization on this test bed is decomposed into 20
binary classification problems, consistently with the number of predefined categories. A
training set of each binary classification problem consists of 700 positive documents and
7000 negative documents. These negative documents are selected at random from 13,300
documents subtracted by 700 positive documents from 14,000 training documents. For a
test set of each binary classification problem, 300 negative documents are allocated by
selecting them randomly from 5,700 negative documents within the test set, in order to
maintain the class balance in the test set.

Figure 8 shows the result of evaluating the five approaches on the test bed,
20NewsGroup. Since each category contain identical number of test documents, micro-
averaged and macro-averaged F1 are same as each other. Therefore, their performances
are presented in an integrated group, instead of two separated groups, in figure 8. This
result shows that back propagation is also the best approach, while NB is the worst
approach with the decomposition of the task on this test bed. Like the previous
experiment set, NTC is comparable and competitive with back propagation.

0

0.2

0.4

0.6

0.8

1

F1

Micro & Macro

SVM
KNN
NB
BP
NTC

Figure 8. Result of evaluate the five text classifiers in 20Newsgroup with decomposition

Figure 9 shows the result of evaluating the four classifiers except the SVM without the

decomposition on this test bed. In this case, a classifier answers to each test document by
providing one of 20 categories. This result shows that there exits two groups: better group
and worse group. The former contains back propagation and NTC, and the latter contains
NB and KNN.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Acc

KNN
NB
BP
NTC

Figure 9. Result of evaluating four Text Classifiers in 20NewsGroups without decomposition

Like the previous set of this experiment, NTC is competitive with back propagation

with smaller size of input data and lower number of training iterations. The result of this
set is similar as that of the previous set, with respect to the trend.

5.3. Reuter 21578
The third experiment is to evaluate the five classifiers on the test bed, Reuter21578,
which is a typical standard test bed in the field of text categorization. We selected most
frequent ten categories instead of the entire categories. Table 4 shows labels of the ten
selected categories and the number of training documents and test documents in each

category. The partition of this test bed into training set and test set follows the version,
ModApte, which is the standard partition of Reuter 21578 for evaluating text classifiers
[Sebastiani 2002]. The number of documents in each category is very variable as shown
in table 4. In this experiment, we can not evaluate these approaches without
decomposition, since each document may have more than one category. Therefore,
evaluation of these approaches without the decomposition was omitted in this set.

Table 4. Partition of Training Set and Test Set in 20NewsGroup
Category Name Training Set Test Set #Document

Acq 1452 672 2124
Corn 152 57 209
Crude 328 203 531
Earn 2536 954 3490
Grain 361 162 523

Interest 296 135 431
Money-Fx 553 246 799

Ship 176 87 263
Trade 335 160 495
Wheat 173 76 249

The task of text categorization on this test bed is decomposed into ten binary

classification ones. For training set of each category, 2000 negative documents are
allocated identically with regardless of the number of positive documents by selecting
them at random from the remaining. For test set of each category, negative documents are
allocated as many as positive documents, with its balance.

Figure 10 shows the result of evaluating the five approaches on this test bed with the
decomposition. Unlike the two previous experiment sets, this result shows that NTC is
the best approach among the five ones with respect to micro-averaged and macro-
averaged F1. NTC has more difference from the others with respect to macro-averaged
F1, as shown in the right side of figure 10.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1

Micro Macro

SVM
KNN
NB
BP
NTC

Figure 10. Result of evaluating five Text Classifiers in Reuter 21578 with decomposition

Figure 10 shows not only performance of the five approaches with respect to two

evaluation measures, but also how much sensitive to sparse category containing a small
number of positive training documents, these approaches are. More than half of ten
categories correspond to sparse categories, as shown in table 4. Especially, SVM and NB

show their large difference between their micro-averaged and macro-averaged F1, when
the right side is compared with the left side of figure 10. This means that they are very
sensitive to sparse categories. However, NTC shows little difference between two
evaluation measures; this means that NTC is more tolerant to sparse categories.

This experiment implies that NTC is most practical among the five approaches. First,
NTC has an acceptable performance in spite of its far smaller input size and learning
iterations than those of the others. Although back propagation has the best classification
performance in two of the three test beds, NTC is competitive and comparable to back
propagation in its classification performance and is much faster than back propagation in
its learning speed. Second, NTC is very tolerant to sparse categories, as mentioned above.
In the practical world, such sparse categories may be given, very often. Based on this
point, we may judge that NTC is more practical than the others in the real world.

6. Conclusion
This work addressed the two problems from representing documents into numerical
vectors by proposing an alternative representation of documents and a new neural
network using the representation. The proposed representation is called string vector,
which is an ordered finite set of words. In other words, a string vector is a vector whose
elements are words, instead of numerical values. The proposed neural network, called
NTC, is based on Perceptron, with two points. The first point is that the input layer is
connected directly with the output layer, and the value of each output node is computed
by a linear combination of the weights. The second point is that the weights are updated
only when a training example is misclassified. However, NTC is different from
Perceptron, in that its input vectors are given as string vectors and its detail process of
learning and classification is different from that of Perceptron, as illustrated in figure 4.

The experiments of the previous section presented that the proposed approach, NTC, is
comparable with the best traditional approach, back propagation, with the smaller input
size and number of iterations. This means that NTC is more practical than back
propagation with respect to both the classification performance and the learning speed.
Previous research has emphasized on only classification accuracy in competition of its
own approach with other approaches. However, we must consider not only classification
accuracy, but also other factors, such as learning speed and transparency for users, for
evaluating practicality of approaches to text categorization. The significance of this
research is that we proposed a practical approach, NTC, considering these factors at same
time.

Although the current version of NTC was successful as an approach to text
categorization, it treats string vectors as unordered sets of words. The process of
initializing weights stored in the tables is independent of the order of string vectors. The
three steps of NTC, initialization, learning, and classification, are independent of the
order of string vectors. Since words in each string vector are sorted in the descending
order of their frequencies, the first element is more important than the last element;
elements should be discriminated for training NTC. The current version of NTC does not
consider this situation. When features of string vectors are defined more sophisticatedly,
the positions of elements of string vectors become more critical for text categorization.
As a remaining task, we need to develop the next version of NTC which considers the
order of elements of each string vector.

In this work, NTC was originally intended for only text categorization; it was applied to
only text categorization in this work. Other traditional neural networks have been applied
to not only text categorization, but also to other pattern classification problems. For
example, back propagation is applicable to not only classification problems, but also
regression problems. This fact is the strong point of back propagation. As a remaining
task, we need to find other application areas where string vectors are better representation
of raw data than numerical vectors and compare the proposed neural network with
traditional ones in the tasks.

Literatures
Androutsopoulos, I., Koutsias, K., Chandrinos, K. V., and Spyropoulos, C.D., “An

Experimental Comparison of Naïve Bayes and Keyword-based Anti-spam Filtering
with personal email message”, The Proceedings of 23rd ACM SIGIR, 2000, pp160-167.

Cristianini, N. and Shawe-Taylor, J., Support Vector Machines and Other Kernel-based
Learning Methods, Cambridge University Press, 2000.

Drucker, H., Wu, D., and Vapnik, V. N., “Support Vector Machines for Spam
Categorization”, IEEE Transaction on Neural Networks, Vol 10, No 5, 1999, pp1048-
1054.

Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, John Wiley & Sons, Inc,
2001.

Frants, V. I., Shapiro, J., and Voiskunskii, V. G., Automated Information Retrieval:
Theory and Methods, Academic Press, 1997.

Hagan, M.T., Demuth, H.B., and Beale, M. Neural Network Design, PWS Publishing
Company, 1995.

Haykin, S. Neural Networks: Comprehensive Foundation, Macmillan College Publishing
Company, 1994.

Hearst, M., “Support Vector Machines”, IEEE Intelligent Systems, Vol 13, No 4, 1998,
pp18-28.

Jackson, P. and Mouliner I., Natural Language Processing for Online Applications: Text
Retrieval, Extraction and Categorization, John Benjamins Publishing Company, 2002.

Joachims, T., “Text Categorization with Support Vector Machines: Learning with many
Relevant Features”, The Proceedings of 10th European Conference on Machine
Learning, 1998, pp143-151.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C., 2002, Text
Classification with String Kernels, Journal of Machine Learning Research, Vol 2, No 2,
pp419-444.

Martin T. Hagan, Howard B. Demuth, and Mark Beale, Neural Network Design, PWS
Publishing Company, 1995.
Massand, B., Linoff, G., and Waltz, D., “Classifying News Stories using Memory based

Reasoning”, The Proceedings of 15th ACM International Conference on Research and
Development in Information Retrieval, 1992, pp59-65.

Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.
Mladenic, D. and Grobelink, M., “Feature Selection for unbalanced class distribution and

Naïve Bayes”, The Proceedings of International Conference on Machine Learning,
1999, pp256-267.

Platt, J. C., “Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines”, Technical Report MSR-TR-98-14, 1998.

Rennie, J., “Improving multi-class text classification with support vector machine”,
Master's thesis, Massachusetts Institute of Technology, 2001.

Ruiz, M. E. and Srinivasan, P., “Hierarchical Text Categorization Using Neural
Networks”, Information Retrieval, Vol 5, No 1, 2002, pp87-118.

Sebastiani, F., “Machine Learning in Automated Text Categorization”, ACM Computing
Survey, Vol 34, No 1, 2002, pp1-47.

Simon Haykin, Neural Networks: Comprehensive Foundation, Macmillan College
Publishing Company, 1994.
Wiener, E. D., “A Neural Network Approach to Topic Spotting in Text”, The Thesis of

Master of University of Colorado, 1995.
Yang, Y., “An evaluation of statistical approaches to text categorization”, Information

Retrieval, Vol 1, No 1-2, 1999, pp67-88.

