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Abstract 
This research proposes a new neural network for text categorization which uses 
alternative representations of documents to numerical vectors. Since the proposed neural 
network is intended originally only for text categorization, it is called NTC (Neural Text 
Categorizer) in this research. Numerical vectors representing documents for tasks of text 
mining have inherently two main problems: huge dimensionality and sparse distribution. 
Although many various feature selection methods are developed to address the first 
problem, the reduced dimension remains still large. If the dimension is reduced 
excessively by a feature selection method, robustness of text categorization is degraded. 
Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to 
the second problem. The goal of this research is to address the two problems at same time 
by proposing a new representation of documents and a new neural network using the 
representation for its input vector. 
 
1. Introduction 
Text categorization refers to the process of assign a category or some categories among 
predefined ones to each document, automatically. Text categorization is a pattern 
classification task for text mining and necessary for efficient management of textual 
information systems. In the academic world, research on text categorization has been 
progressed very much, and we will survey it in next section. In the industrial world, text 
categorization systems were already developed as an independent system or a module for 
textual information systems [Jackson and Mouliner 2002]. Although research and 
development on text categorization have been progressed like this, we need further 
research on it to improve techniques and implementations of text categorization. 

There are two types of approaches to text categorization: rule based and machine 
learning based approaches [Sebastiani 2002]. Rule based approaches mean ones where 
classification rules are defined manually in form of if-then-else, and documents are 
classified based on the rules. For example, classification rules are defined as, “business 
and company  company” meaning that if a document includes the two words ‘business’ 
and ‘company’, it is classified into the category, ‘business’ [Jackson and Mouliner 2002]. 
This class of approaches has high precision but poor recall, because of its poor flexibility. 
Machine learning based approaches mean ones where classification rules or equations are 
defined automatically using sample labeled documents. This class of approaches has a 
much higher recall but a slightly lower precision than rule based approaches. In addition 
to their poor flexibility, rule based approaches require time consuming manual jobs for 
building classification rules. Therefore, machine learning based approaches are replacing 
rule based ones for text categorization. This research focuses on machine learning based 
approaches to text categorization, discarding rule based ones. 



Typical machine learning based approaches to text categorization are K Nearest 
Neighbor, Naïve Bayes, Support Vector Machine, and Back Propagation. They are used 
not only for text categorization, but also for any pattern classification problem, such as 
image classification, protein classification, and character recognition. Although there are 
other approaches than the five approaches, the four approaches are most typical and 
popular. In section 2, we will present previous cases of applying the four approaches to 
text categorization. In order to apply one of the four approaches to any pattern 
classification problem, raw data should be encoded into numerical. 

Like any other pattern classification problem, in text categorization, it is true that 
documents given as raw data should be encoded into numerical vectors. The process will 
be described in detail in section 3. This strategy of encoding documents leads to two main 
problems: huge dimensionality and sparse distribution. In spite of using feature selection 
methods, a reduced dimension of numerical vectors representing documents still remains 
large. Excessive reduction of the dimension of numerical vectors using a feature selection 
method degrades the robustness of text categorization. The second problem, sparse 
distribution, leads to poor discrimination among numerical vectors for categorizing them. 
Although Support Vector Machine is very tolerant to huge dimensionality, it is not so to 
the second problem. Therefore, the goal of this research is to address the two problems at 
same time. 

The idea of this research is to propose an alternative representation of documents to 
numerical vectors and a new supervised neural network as an approach to text 
categorization using the alternative representation in order to avoid the two problems. In 
this article, the alternative representation of documents is called string vector, and the 
proposed neural network is called NTC (Neural Text Categorizer). A sting vector is 
defined as a finite ordered set of words; it consists of words as its element, instead of 
numerical values. Since string vectors representing documents are classified robustly 
with their smaller dimension than numerical vectors in using the proposed neural network, 
string vectors are regarded as more compact representation of documents for text 
categorization. Additional advantage of string vectors is to provide more transparency in 
classification; it is possible to trace why documents are classified into such labels. 

The architecture of NTC consists of three layers: input layer, learning layer, and output 
layer. Like Perceptron, the input layer is connected directly with the output layer, and the 
learning layer determines synaptic weights between the input layer and the output layer. 
The input layer corresponds to an input vector given as a string vector, and the learning 
layer and the output layer correspond to predefined categories. Each node in the learning 
layer has its own table consists of words and their weights indicating their membership of 
the corresponding category. Learning of NTC is the process of optimizing these weights 
in each table. NTC classifies unseen documents by computing output values by summing 
corresponding weights of string vectors.  
The advantage of the proposed neural network is that NTC can classify documents with 
its sufficient robustness with its smaller input size and iterations of learning than 
traditional approaches using numerical vectors. Therefore, NTC solves the first problem, 
huge dimensionality, completely. Since sparse distribution can not exist in string vectors, 
the second problem is also addressed. Another advantage of NTC is that it provides 
transparency about its classification; it provides answer to why it classifies an unseen 
document into a particular category.  



This article consists of six sections including this section. In section 2, we explore 
relevant previous research and consider its limitations in text categorization. In section 3, 
we describe in detail the process of encoding documents into numerical vectors and string 
vectors with the two subsections. In section 4, we describe the proposed neural network, 
called NTC, in detail, with respect to its architecture, learning process, and properties. In 
section 5, we compare the proposed neural network with other traditional approaches in 
text categorization, using three test beds. In section 6 as the conclusion, we will mention 
the significance of this work, and present directions of further research. 
 
2. Previous Works 
In this section, we will survey previous works relevant to this research, and point out 
their limitations. There exist other kinds of approaches to text categorization than 
machine learning based ones: heuristic and rule based approaches. Heuristic approaches 
were already applied to early commercial text categorization systems [Jackson and 
Mouliner 2000]. However, we count out the kind of approaches in our exploration, since 
they are rule of thumbs. Since rule based approaches have poor recall and require a time 
consuming job of building rules manually as mentioned in the previous section, they are 
not covered in this article, either. Therefore, this article counts only machine learning 
based approaches to text categorization considered as state of the art ones. 

Typical machine learning algorithms applied traditionally to text categorization are 
KNN (K Nearest Neighbor), NB (Naïve Bayes), SVM (Support Vector Machine), and BP 
(Back Propagation). The four approaches to text categorization have been used more 
popularly in previous literatures on text categorization than any other traditional 
approaches. Among them, the simplest approach is KNN. KNN is a classification 
algorithm where objects are classified by voting several labeled training examples with 
their smallest distance from each object. KNN was initially applied to classification of 
news articles by Massand et al, in 1992 [Massand et al 1992]. Yang compared 12 
approaches to text categorization with each other, and judged that KNN is one of 
recommendable approaches, in 1999 [Yang 1999]. KNN is evaluated as a simple and 
competitive algorithm with Support Vector Machine for implementing text categorization 
systems by Sebastiani in 2002 [Sebastiani 2002]. Its disadvantage is that KNN costs very 
much time for classifying objects, given a large number of training examples because it 
should select some of them by computing the distance of each test object with all of the 
training examples.  

Another popular and traditional approach to text categorization is NB. Differently from 
KNN, it learns training examples in advance before given unseen examples. It classifies 
documents based on prior probabilities of categories and probabilities that attribute 
values belong to categories. The assumption that attributes are independent of each other 
underlies on this approach. Although this assumption violates the fact that attributes are 
dependent on each other, its performance is feasible in text categorization [Michell 1997]. 
Naïve Bayes is used popularly not only for text categorization, but also for any other 
classification problems, since its learning is fast and simple [Duda et al 2001].  

In 1997, Mitchell presented a case of applying NB to text categorization in his textbook 
[Mitchell 1997]. He asserted that NB was a feasible approach to text categorization, 
although attributes of numerical vectors representing documents were dependent on each 
other; this fact contradicts with the assumption underlying in NB. In 1999, Mladenic and 



Grobellink evaluated feature selection methods within the application of Naïve Bayes to 
text categorization [Mladenic and Grobelink 1999]. Their work implied that NB is one of 
standard and popular approaches to text categorization. Androutsopoulos et al adopted 
NB for implementing a spam mail filtering system as a real system based on text 
categorization in 2000 [Androutsopoulos, et al. 2000]. It requires encoding documents 
into numerical vectors for using NB to text categorization. 

Another popular and traditional approach to text categorization is SVM. Recently, this 
machine learning algorithm becomes more popular than the two previous machine 
learning algorithms. Its idea is derived from a linear classifier, Perceptron, which is an 
early neural network. Since the neural network classifies objects by defining a hyper-
plane as a boundary of classes, it is applicable to only linearly separable distribution of 
training examples. The idea of SVM is that if a distribution of training examples is not 
linearly separable, these examples are mapped into another space where their distribution 
is linearly separable, as illustrated in the left side of figure 1. SVM optimizes the weights 
of the inner products of training examples and its input vector, called Lagrange 
multipliers [Cristiani et al 2000], instead of those of its input vector, itself, as its learning 
process. It defines two hyper-planes as a boundary of two classes with a maximal margin, 
as illustrated in the left side of figure 1. Refer to [Hearest 1998] or [Cristiani et al 2000], 
for more detail description on SVM. 
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Figure 1. Mapping Vector Space in SVM 

 
The advantage of SVM is that it is tolerant to huge dimensionality of numerical vectors; 

it addresses the first problem. Its advantage leads to make it very popular not only in text 
categorization, but also any other classification problems [Cristinani et al 2000]. In 1998, 
it was initially applied to text categorization by Joachims [Joachims 1998]. He validated 
the classification performance of SVM in text categorization by comparing it with KNN 
and NB. Drucker et al adopted SVM for implementing a spam mail filtering system and 
compared it with NB in implementing the system in 1999 [Drucker et al 1999]. They 
asserted empirically that SVM was the better approach to spam mail filtering than NB. In 
2000, Cristianini and Shawe-Taylor presented a case of applying SVM to text 
categorization in their textbook [Cristianini and Shawe-Taylor 2000]. In 2002, Sebastiani 
asserted in his survey paper that SVM is most recommendable approach to text 
categorization by collecting experimental results on the comparison of SVM with other 
approaches from previous works [Sebastiani 2002]. In spite of the advantage of SVM, it 
has two demerits. One is that it is applicable to only binary classification; if a multiple 
classification problem is given, it should be decomposed into several binary classification 
problems for using SVM. The other is that it is fragile to the problem in representing 



documents into numerical vectors, sparse distribution, since the inner products of its input 
vector and training examples generates zero values very frequently.  

The third popular and traditional approach to text categorization is BP. It is most 
popular supervised neural network and used for not only classification tasks but also 
nonlinear regression tasks [Haykin 1994][Hagan et al 1995]. It is also derived Perceptron, 
together with SVM. When a distribution of training examples is not linearly separable, in 
SVM, the given space is changed into another space where the distribution is linearly 
separable, whereas in back propagation,  a quadratic boundary is defined by adding one 
more layer, called hidden layer [Haykin 1994][Hagan et al 1995], as illustrated in the 
right side of figure 1. More detail explanation about back propagation is included in 
[Haykin 1994] or [Hagan et al 1995]. 

In 1995, BP was initially applied to text categorization by Wiener in his master thesis 
[Wiener 1995]. He used Reuter 21578 as the test bed for evaluating the approach to text 
categorization and shown that back propagation is better than KNN in the context of 
classification performance. In 2002, Ruiz and Srinivasan applied continually back 
propagation to text categorization [Ruiz and Srinivasan 2002]. They used a hierarchical 
combination of BPs, called HME (Hierarchical Mixture of Experts), to text categorization, 
instead of a single BP. They compared HME of BPs with a flat combination of BPs, and 
observed that HME is the better combination of BPs. Since BP learns training examples 
very slowly, it is not practical, in spite of its broad applicability and high accuracy, for 
implementing a text categorization system where training time is critical. 

Research on machine learning based approaches to text categorization has been 
progressed very much, and they have been surveyed and evaluated systematically. In 
1999, Yang evaluated 12 approaches to text categorization including machine learning 
based approaches directly or indirectly in text categorization [Yang 1999]1. She judged 
the three approaches, LLSF (Linear Least Square Fit), K Nearest Neighbor, and 
Perceptron, worked best for text categorization. In 2002, Sebastiani surveyed and 
evaluated more than ten machine learning based approaches to text categorization 
[Sebastiani 2002]. He asserted that Support Vector Machine is best approach to text 
categorization with respect to classification performance. All approaches which were 
surveyed and evaluated in these literatures require encoding documents into numerical 
vectors in spite of the two problems. 

We explored and presented previous cases of applying one of the four traditional 
machine learning algorithms to text categorization. Although the traditional approaches 
are feasible to text categorization, they accompany with the two main problems from 
representing documents into numerical vectors. In the previous works, dimension of 
numerical vectors should reserve, at least, several hundreds for the robustness of text 
categorization systems. In order to mitigate the second problem, sparse distribution, a 
task of text categorization was decomposed into binary classification tasks in applying 
one of the traditional approaches. This requires classifiers as many as predefined 
categories, and each classifier judges whether an unseen document belongs to its 
corresponding category or not. 
There is a previous trial to solve the two problems. In 2002, Lodhi et al proposed a string 
kernel for applying Support Vector Machine to text categorization [Lodhi et al 2002]. In 
                                                 
1 In her study, direction evaluation means to evaluate approaches by performing experiments, while indirect 
evaluation means to evaluate them by collecting experimental results from other literatures. 



their solution, documents as raw data are used directly for text categorization without 
representing them into numerical vectors. String kernel is a function computing an inner 
product between two documents given as two long strings. An additional advantage of 
the solution is to process documents independently of a natural language in which 
documents are written. However, their solution was not successful in that it took far more 
time for computing string kernel of two documents and the version of SVM using the 
string kernel was not better than the traditional version. As presented in section 5, this 
research will be a successful attempt to solve the two problems by proposing string 
vectors and a new neural network. 

 
3. Document Representation 
Since documents are unstructured data by themselves, they can not be processed directly 
by computers. They need to be encoded into structured data for processing them for text 
categorization. This section will describe the two strategies of encoding documents with 
the two subsections: the traditional strategy and the proposed strategy. The first 
subsection describes the former and points out its demerits, and the second subsection 
describes the latter and mentions its merits. 
 
3.1. Numerical Vectors 
A traditional strategy of encoding documents for tasks of text mining, such as text 
categorization is to represent them into numerical vectors. Since input vectors and weight 
vectors of traditional neural networks such as back propagation and RBF (Radial Basis 
Function) are given as numerical vectors, each document should be transformed into a 
numerical vector for using them for text categorization. Therefore, this subsection will 
describe the process of encoding documents into numerical vectors and what are their 
attributes and values. 

Figure 2 illustrates the process of extracting feature candidates for numerical vectors 
from documents. If more than two documents are given as the input, all strings of 
documents are concatenated into a long string. The first step of this process is 
tokenization where the string is segmented into tokens by white space and punctuations. 
In the second step, each token is stemmed into its root form; for example, a verb in its 
past is transformed into its root form, and a noun in its plural form is transformed into its 
singular form. Words which function only grammatically with regardless of a content are 
called stop words [Frants et al 1997], and they correspond to articles, conjunctions, or 
pronouns. In the third step, stop words are removed for processing documents more 
efficiently and reliably for text categorization. Through the three steps illustrated in 
figure 2, a collection of words are generated as feature candidates. 
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Figure 2. The process of encoding a document into a bag of words 

 
Since the number of the generated feature candidates is usually too big, using all of them 
is not feasible as features of numerical vectors. Therefore, only some of them are used as 
features of numerical vectors for efficiency. A scheme of defining criteria for selecting 
some of them as features is called feature selection method [Mladenic and Grobelink 
1999]. Generally, features are selected from the generated collection by their frequencies 
in the corpus. Therefore, candidates with highest frequencies are used as features of 
numerical vectors. The number of selected candidates as features becomes the dimension 
of numerical vectors. There are other feature selection methods than the frequency based 
one, and they are described in detail in [Mladenic and Grobelink 1999] and [Sebatiani 
2002]. However, although only some of the candidates are used as features, the number 
of features is still large for robust text categorization2.  

The selected features are given as attributes of numerical vectors and numerical 
information about attributes become elements of numerical vectors. In this article, we 
mention the three ways of defining elements as the representative ones, although others 
may exist. The first way is to assign a binary value indicating absence or presence of the 
corresponding word in the given document; one indicates its presence and zero indicates 
its absence. The second way is to define elements as frequencies of corresponding words 
in the given document; the elements become integers which are greater than or equal to 
zero. The third way is to assign weights computed from equation (1) to elements of 
numerical vectors; elements are real values. 

)1)(log)(log()( 22 +−= kkiki wdfDwtfwweight ( 1 ) 

where )( ki wtf  is the frequency of the word, 
kw , D  is the total number of documents in the 

corpus, and )( kwdf  is the number of documents including the word, 
kw  in the given corpus. 

Note that the first and second way does not require the reference to a corpus, where as the 
third way requires the reference for computing elements of numerical vectors using 
equation (1).  

Note that numerical vectors encoding documents have two main problems as mentioned 
in section 1. The first problem is that the dimension of numerical vectors is still large. 
This problems leads to high cost of time for processing each encoded document for 

                                                 
2 Generally, several ten thousands feature candidates are generated from a particular corpus. Among them, 
several hundreds candidates are used as features. Therefore, the dimension of numerical vectors is several 
hundreds and is still high. 



training a classifier and to requirement of a very large number of training examples 
proportionally to the dimension. The second problem is that each numerical vector 
includes zero values, dominantly. Since the discrimination among numerical vectors over 
categories is lost, categorization performance is degraded. 

 
3.2. String Vectors 
An alternative strategy of encoding documents for text categorization is to represent them 
into string vectors. In this subsection, we describe this strategy and its advantage in detail. 
However, this strategy is applicable to only NTC, while the previous one is applicable to 
any traditional machine learning algorithm. 

A string vector is defined as a finite ordered set of words. In other words, a string 
vector is a vector whose elements are words, instead of numerical values. Note that a 
string vector is different from a bag of words, although both of them are similar as each 
other in their appearance. A bag of words is an infinite unordered set of words; the 
number of words is variable and they are independent of their positions. In string vectors, 
words are dependent on their positions as elements, since words correspond to their 
features. Features of string vectors will be described in detail in the next paragraph. 

Features of string vectors are defined as properties of words to the given document. The 
features are classified into the three types: linguistic features, statistical features, and 
positional features. Linguistic features are features defined based on linguistic knowledge 
about words in the given document: the first or last noun, verb, and adjective, in a 
paragraph, title, or full text. Statistical features are features defined based statistical 
properties of words in the given documents; the highest frequent word and the highest 
weighted word using equation (1). Positional features are features defined based on 
positions of words in a paragraph or the full text: a random word in the first or last 
sentence or paragraph, or the full text. We can define features of string vectors by 
combining some of the three types, such as the first noun in the first sentence, the highest 
frequent noun in the first paragraph, and so on. 

We can define features of string vectors in various ways as mentioned above, but in this 
work, features of string vectors are defined based on only frequencies of words for 
implementing easily and simply the module of encoding documents into string vectors. A 
d dimensional string vector consists of d words in the descending order of their 
frequencies in the given entire full text; the first element is the highest frequent word, the 
second element is the second highest frequent word, and the last element is the d the 
highest frequent word. Figure 3 illustrates the process of encoding a document into its 
string vector with the simple definition of features. In the first step of figure 3, a 
document is indexed into a list of words and their frequencies. Its detail process of the 
first step is illustrated in figure 2. If the dimension of string vectors is set to d , d  highest 
frequent words are selected from the list, in the second step. In the third step, the selected 
words are sorted in the descending order of their frequencies. This ordered list of words 
becomes a string vector representing the document given as the input. 
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Figure 3. The process of mapping a bag of words into a string vector 

 
This strategy of encoding documents for text categorization addresses the two main 

problems from the previous strategy. As presented in section 5, NTC using 50 
dimensional string vectors is compared with other traditional approaches using 500 
dimensional numerical vectors. The classification performance of NTC is comparable 
with the best traditional approach with much smaller input size and number of iterations. 
The experiments show that string vectors represent documents more compactly and 
efficiently than numerical vectors; the first problem is addressed. Since sparse 
distribution can not exist in string vectors, the second problem is also addressed. 

Another advantage of string vectors is that string vectors represent documents more 
transparently than numerical vectors. Since each element of string vectors is symbolic 
data, it is possible to guess the content of the document by its surrogate; this is more user-
friendly representation of documents than numerical vectors. Therefore, it is easier to 
trace why each unseen document is classified into a particular label in string vectors, than 
in numerical vectors. 
 
4. NTC (Neural Text Categorizer) 
This section describes the proposed neural network, NTC, in detail, with respect to its 
architecture, training, classification, and properties. The proposed neural network follows 
Perceptron in that synaptic weights are connected directly between the input layer and the 
output layer, and the weights are updated only when each training example is 
misclassified. However, note that NTC is different from Perceptron in context of its detail 
process of learning and classification, since it uses string vectors as its input vectors, 
instead of numerical vectors. The learning layer given as an additional layer to the input 
and the output layer is different from the hidden layer of back propagation with respect to 
its role. The learning layer determines synaptic weights between the input and the output 



layer by referring to the tables owned by learning nodes. The learning of NTC refers to 
the process of optimizing weights stored in the tables. 

Figure 4 illustrates the architecture of the proposed neural network, NTC. It consists of 
the three layers: input layer, output layer, and learning layer. The input layer receives an 
input vector given as a string vector. The learning layer determines weights between the 
input and the output layer corresponding to words of the given input vector by looking up 
in the tables owned by learning nodes. The output layer generates the categorical scores 
indicating memberships of the string vector in categories as the output. The conditions of 
designing the proposed neural network, NTC, for text categorization are defined as 
follows. 

• The number of the input nodes should be identical to the dimension of string 
vectors representing documents.  

This layer receives an input vector given as a string vector, so each node corresponds 
to each word in the string vector. 
• The number of the learning nodes should be identical to the number of predefined 

categories. 
Nodes of this layer own tables corresponding to predefined categories, and determine 
weights between the input and output layer, to each word in the input vector. 
• The number of the output nodes should be identical to the number of predefined 

categories. 
This layer generates categorical scores as the output, and they correspond to 
predefined categories. 
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Figure 4. The Architecture of NTC 

 
The first step of NTC is the initialization of weights which is the process of filling the 

tables which are empty initially. Each table corresponds to a predefined category, and it 
consists of entries. Each entry consists of a word and its weight. In this step, each weight 
is filled with the frequency of the corresponding word in the category corresponding to 
the table. Therefore, all tables owned by the learning nodes are constructed in this step. 
The learning of NTC follows its initialization. An input vector given as a string vector is 
denoted by [ ]dttt ,...,, 21=x , where it , di ≤≤1 ,  is a word given as an element of the 
string vector, x , and d  is the dimension of the string vector, x . A set of the given 
predefined categories is denoted by [ ]

C
cccC ,...,, 21= . The weigh, jiw denote the weight 



connected between an input node, i , and an output node corresponding to the category, 
jc  Cj ≤≤1 . The value of the weight, jiw , is defined, using equation (2), 





=
otherwise     0

 tablein the  word theis  thereif  )( ij

ji

ttable
w ( 2 ) 

where jtable  denotes the table owned by the learning node corresponding to the category, 

jc  and )( ic ttable  means the weights of the word, it , stored in the table, jtable . The 
weight, jiw , means the membership of the word, it , in the category, jc . Therefore, if 
there is the word, it , in the table, jtable , the weight, jiw , is fetched from the table, jtable . 
Otherwise, the weight, jiw  becomes zero. 

We compute the value of the output node, jo , the output node corresponding to the 
category, jc , using equation (3), 

∑
=

=
d

i
jij wo

1

( 3 ). 

The value of jo  means the membership of the given input vector, x  in the category, jc . 
Since values of output nodes are combined by linear combination of weights illustrated in 
equation (3), the proposed neural network is similar as Perceptron. This is the first 
property shared with Perceptron. 

As mentioned above, the learning of NTC is the process of optimizing weights between 
the input and output layer to minimize classification error in training examples. This 
learning is performed interactively to each training example. Each string vector in the 
training set has its own target label, jc . If its classified category, kc  is identical to its 
target category, c , the weights does not change, as expressed in equation (4),  

0,0  , if =∆=∆= jikikj wwcc ( 4 ). 
Otherwise, weights are adjusted to reinforce weights for its target category and to inhibit 
weights for its misclassified category, to minimize the classification error, as illustrated in 
equation (5), 

jijikikikj wwwwcc ηη =∆−=∆≠ ,  , if ( 5 ) 

where η  is the learning rate given as a parameter, like any other neural networks, such as 
Perceptron, back propagation, and Kohonen Networks. This learning is repeated until the 
weights converge. 
Figure 5 illustrates the process of learning sample documents and classifying unseen ones 
using NTC. A collection of sample labeled documents is given as the input, and the 
learning rate and the number of iterations are given as the parameters of NTC.  In its first 
step, NTC initializes the weights stored in the tables owned by the learning nodes. For 
each sample labeled document, it is classified using equation (3) and the weights are 
updated using equation (5) whenever it is misclassified. This process is repeated with the 
fixed number, given as a parameter. After training NTC, unseen documents are classified 
by encoding them into string vectors, computing values of output nodes with the 
optimized weights using equation (3), and assigning the category corresponding to the 
output node with the highest value to each unseen document. 

 



 
Figure 5. Process of training NTC and classifying unseen documents 

 
Since NTC uses string vectors as its input vectors, the two main problems could be 

naturally avoided at same time. Each table owned by its corresponding learning node 
stores classification rules grained by training the NTC. These rules provide the basis of 
classifying documents more transparently than traditional machine learning algorithms 
using numerical vectors. Although string vectors used as input vectors in the proposed 
neural network address the two main problems, operations on string vectors are more 
restricted than those on numerical vectors. For example, we do not discover the method 
for finding a string vector representing a collection of string vectors, corresponding to a 
mean vector and a covariance matrix in numerical vectors. Therefore, NTC can not be 
trained in batch mode, because a mean vector can not be computed in string vectors. 

 
5. Experimental Results 
This section concerns experimental results of evaluating traditional and proposed 
approaches to text categorization on three test beds. In the experiments, five approaches, 
SVM, NB, KNN, Back Propagation, and NTC are evaluated as the approaches to text 
categorization, and three collections of news articles, Newspage.com, 20NewsGroups, 
and Reuter 21578, are used as the test beds of text categorization. In two of three test 
beds, the five approaches are evaluated both with decomposing text categorization into 
binary classification problems and without decomposing it. 

In the experiments, documents are represented into string vectors for using NTC and 
numerical vectors for using the other methods. The dimensions of numerical vectors and 
string vectors representing documents are set as 500 and 50, respectively. In encoding 
documents into numerical vectors, most frequent 500 words from a given training set for 
each problem are selected as their features. The values of the features of numerical 
vectors are binary ones indicating the absence or presence of words in a given document; 

Classifier Training
Input: A Series of Sample Documents, Learning Rate, and Iteration Number 
Step 1: Encode these sample documents into string vectors  
Step 2: Design the architecture of NTC 
Step 3: Initialize weights in each learning node with its document frequency within its 
corresponding category 
Step 4: Repeat step 3-1 with the number of iteration 
Step 4-1: For each encoded sample document 
Step 4-1-1: Compute the values of output nodes of the encoded document with the current weight 
using the equation (3) 
Step 4-1-2: Classify each training string vector into the category corresponding to the output node 
with its highest value 
Step 4-1-3: If its classified category is different from its target category, update weights to every 
misclassification using the equation (5) 
Output: Optimized weights in each learning node  
 
Document Classification 
Input: An unseen document and the optimized weights in each learning node 
Step 1: Encode the unseen document into a string data 
Step 2: Compute the values of output nodes of the encoded document with the current weight 
using the equation (5) 
Step 3: Classify the unseen string vector into the category corresponding to the output node with 
its highest value 
Output: its classified label 



this is for using Naïve Bayes. In encoding documents into string vectors, the most 
frequent 50 words are selected from a given document and sorted in the descending order 
of their frequencies as values of its corresponding string vector.   

The parameters of the five approaches involved in this experiment are set by tuning 
them with a validation set, which is constructed by selecting 600 documents randomly 
from training documents, spanning the three test beds. Table 10 shows the definition of 
the parameters which is obtained through this tuning. With the parameters defined in 
table 10, the five approaches to text categorization will be applied to the three test beds. 

 
Table 1. Parameters of the Five Approaches 

Approaches to Text 
Categorization 

Definition of Parameters 

SVM Capacity = 4.0 
KNN #nearest number = 3 
NB N/A 
Back Propagation Hidden Layer: 10 hidden nodes 

Learning rate: 0.3 
#Iteration of Training: 1000 

NTC Learning rate: 0.3 
#Iteration of Training: 100 

 

5.1. NewsPage.com 
The first set of this experiment pursues the evaluation of the five approaches on the test 
bed, Newspage.com, with and without the decomposition. This test bed consists of 1,200 
news articles in the format of plain texts built by copying and pasting news articles 
manually and individually in the web site, www.newspage.com. Table 2 specifies the 
predefined categories, the number of documents of each category, and the partition of the 
test bed into training set and test set. As shown in table 11, the ratio of training set to test 
set is set as 7:3. Here, this test bed is called Newspage.com, based on the web site, given 
as its source.  
 

Table 2.  Training Set and Test Set of Newspage.com 
Category Name Training Set Test Set #Document 

Business 280 120 400 
Health 140 60 200 
Law 70 30 100 

Internet 210 90 300 
Sports 140 60 200 
Total 840 360 1200 

 
The task of text categorization on this test bed is decomposed into five binary 

classification problems, category by category. In each binary classification problem, a 
classifier answers whether an unseen document belongs to its corresponding category, or 
not. Table 3 shows the definition of training sets of the predefined categories. In table 3, 
‘positive’ indicates that documents belong to the corresponding category and such 



documents will called positive documents, while ‘negative’ indicates that documents do 
not and such documents will be called negative documents. For each training set, all of 
documents not belonging to its corresponding category are allocated as negative 
documents. For each test set, negative documents are allocated as many as positive 
documents defined in the third column of table 2. 

 
Table 3. The Allocation of Positive and Negative Class in Training Set of each Category 

Category Name Positive  Negative Total 
Business 280 560 840 
Health 140 700 840 
Law 70 770 840 

Internet 210 630 840 
Sports 140 700 840 

 
Figure 6 presents the result of evaluating the five approaches on the test bed, 

Newspage.com, with a graph. On x-axis of the graph, the left group indicates the micro-
averaged F1, the right group indicates the macro-averaged F1, and each bar within each 
group indicates one of the five approaches. The y-axis of the graph indicates the F1-
measure which weight recall and precision, equally. The result of this evaluation shows 
that back propagation works best among the approaches with decomposition of the task 
of text categorization on this test bed into five binary classification problems. Although 
NTC is the second best approach to back propagation, it is comparable and competitive to 
back propagation, as shown in figure 6. 
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Figure 6. Result of evaluating five Text Classifiers in Newspage.com with decomposition 

 
Figure 7 shows the result of evaluating the four classifiers except SVM without 

decomposition on this test bed. The reason of excluding SVM in this evaluation is that 
SVM is applicable only to a binary classification problem. Without decomposition, a 
classifier answers one of the five categories presented in table 11 and 12, instead of yes 
or no. Y-axis of figure 7 indicates accuracy which is the portion of correctly classified 
test documents to all of them, instead of F1-measure. This result shows that NTC is the 
best text classifier among the four approaches on this test bed without decomposition. 

 
 



0

0.2

0.4

0.6

0.8

1

Acc

KNN
NB
BP
NTC

 
Figure 7. Result of evaluating four Text Classifiers in Newspage.com without decomposition 

 
Although NTC is not better than back propagation in this test bed with respect to its 

performance, among the five approaches, NTC is preferable for implementing the module, 
‘classifier training’ of DDO systems of the four-phase scenario, with two reasons. The 
first reason is that time taken for training a classifier is more critical than accuracy for the 
implementation. In the four-phase-scenario, training a classifier in the third phase leads to 
delay between creation mode and maintenance mode. During this period, an information 
system devotes itself to training a classifier. Although back propagation is a slightly 
better approach than NTC with respect to its performance, it takes time for training itself 
approximately fifty times that for training NTC. NTC is comparable and competitive with 
back propagation in spite of its tenth smaller dimension and iterations of training. The 
second reason is that NTC is more transparent than the others in classifying documents. 
For example, in back propagation, there is no way to find answer to the question, “why is 
an unseen document classified into a particular category?” Since NTC uses string vectors 
given as symbolic data as its input vector, it is possible to trace process of classifying 
unseen documents to answer the question. Whenever classifying an unseen document, we 
can show weights of elements given as words category by category to support why the 
document is classified into such a category. 

 
5.2. 20NewsGroups 
The second experiment is to evaluate the five approaches on another test bed, called 
‘20NewsGroups’. This test bed is obtained by downloading it from the web site, 
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html. This test bed consists 
of 20 categories and 20,000 documents; each category contains 1,000 documents. This 
test bed is partitioned into the training set and the test set with the ratio, 7:3; there are 700 
training documents and 300 test documents per each category. Hence, 20,000 documents 
are partitioned into 14,000 training documents and 6000 test documents. 

In this experiment, the task of text categorization on this test bed is decomposed into 20 
binary classification problems, consistently with the number of predefined categories. A 
training set of each binary classification problem consists of 700 positive documents and 
7000 negative documents. These negative documents are selected at random from 13,300 
documents subtracted by 700 positive documents from 14,000 training documents. For a 
test set of each binary classification problem, 300 negative documents are allocated by 
selecting them randomly from 5,700 negative documents within the test set, in order to 
maintain the class balance in the test set. 



Figure 8 shows the result of evaluating the five approaches on the test bed, 
20NewsGroup. Since each category contain identical number of test documents, micro-
averaged and macro-averaged F1 are same as each other. Therefore, their performances 
are presented in an integrated group, instead of two separated groups, in figure 8. This 
result shows that back propagation is also the best approach, while NB is the worst 
approach with the decomposition of the task on this test bed. Like the previous 
experiment set, NTC is comparable and competitive with back propagation. 
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Figure 8. Result of evaluate the five text classifiers in 20Newsgroup with decomposition 

 
Figure 9 shows the result of evaluating the four classifiers except the SVM without the 

decomposition on this test bed. In this case, a classifier answers to each test document by 
providing one of 20 categories. This result shows that there exits two groups: better group 
and worse group. The former contains back propagation and NTC, and the latter contains 
NB and KNN. 
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Figure 9. Result of evaluating four Text Classifiers in 20NewsGroups without decomposition 

 
Like the previous set of this experiment, NTC is competitive with back propagation 

with smaller size of input data and lower number of training iterations. The result of this 
set is similar as that of the previous set, with respect to the trend. 

 
5.3. Reuter 21578 
The third experiment is to evaluate the five classifiers on the test bed, Reuter21578, 
which is a typical standard test bed in the field of text categorization. We selected most 
frequent ten categories instead of the entire categories. Table 4 shows labels of the ten 
selected categories and the number of training documents and test documents in each 



category. The partition of this test bed into training set and test set follows the version, 
ModApte, which is the standard partition of Reuter 21578 for evaluating text classifiers 
[Sebastiani 2002]. The number of documents in each category is very variable as shown 
in table 4. In this experiment, we can not evaluate these approaches without 
decomposition, since each document may have more than one category. Therefore, 
evaluation of these approaches without the decomposition was omitted in this set. 
 

Table 4. Partition of Training Set and Test Set in 20NewsGroup 
Category Name Training Set Test Set #Document 

Acq 1452 672 2124 
Corn 152 57 209 
Crude 328 203 531 
Earn 2536 954 3490 
Grain 361 162 523 

Interest 296 135 431 
Money-Fx 553 246 799 

Ship 176 87 263 
Trade 335 160 495 
Wheat 173 76 249 

 
The task of text categorization on this test bed is decomposed into ten binary 

classification ones. For training set of each category, 2000 negative documents are 
allocated identically with regardless of the number of positive documents by selecting 
them at random from the remaining. For test set of each category, negative documents are 
allocated as many as positive documents, with its balance. 

Figure 10 shows the result of evaluating the five approaches on this test bed with the 
decomposition. Unlike the two previous experiment sets, this result shows that NTC is 
the best approach among the five ones with respect to micro-averaged and macro-
averaged F1. NTC has more difference from the others with respect to macro-averaged 
F1, as shown in the right side of figure 10. 
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Figure 10. Result of evaluating five Text Classifiers in Reuter 21578 with decomposition 

 
Figure 10 shows not only performance of the five approaches with respect to two 

evaluation measures, but also how much sensitive to sparse category containing a small 
number of positive training documents, these approaches are. More than half of ten 
categories correspond to sparse categories, as shown in table 4. Especially, SVM and NB 



show their large difference between their micro-averaged and macro-averaged F1, when 
the right side is compared with the left side of figure 10. This means that they are very 
sensitive to sparse categories. However, NTC shows little difference between two 
evaluation measures; this means that NTC is more tolerant to sparse categories. 

This experiment implies that NTC is most practical among the five approaches. First, 
NTC has an acceptable performance in spite of its far smaller input size and learning 
iterations than those of the others. Although back propagation has the best classification 
performance in two of the three test beds, NTC is competitive and comparable to back 
propagation in its classification performance and is much faster than back propagation in 
its learning speed. Second, NTC is very tolerant to sparse categories, as mentioned above. 
In the practical world, such sparse categories may be given, very often. Based on this 
point, we may judge that NTC is more practical than the others in the real world. 
 
6. Conclusion 
This work addressed the two problems from representing documents into numerical 
vectors by proposing an alternative representation of documents and a new neural 
network using the representation. The proposed representation is called string vector, 
which is an ordered finite set of words. In other words, a string vector is a vector whose 
elements are words, instead of numerical values. The proposed neural network, called 
NTC, is based on Perceptron, with two points. The first point is that the input layer is 
connected directly with the output layer, and the value of each output node is computed 
by a linear combination of the weights. The second point is that the weights are updated 
only when a training example is misclassified. However, NTC is different from 
Perceptron, in that its input vectors are given as string vectors and its detail process of 
learning and classification is different from that of Perceptron, as illustrated in figure 4. 

The experiments of the previous section presented that the proposed approach, NTC, is 
comparable with the best traditional approach, back propagation, with the smaller input 
size and number of iterations. This means that NTC is more practical than back 
propagation with respect to both the classification performance and the learning speed. 
Previous research has emphasized on only classification accuracy in competition of its 
own approach with other approaches. However, we must consider not only classification 
accuracy, but also other factors, such as learning speed and transparency for users, for 
evaluating practicality of approaches to text categorization. The significance of this 
research is that we proposed a practical approach, NTC, considering these factors at same 
time. 

Although the current version of NTC was successful as an approach to text 
categorization, it treats string vectors as unordered sets of words. The process of 
initializing weights stored in the tables is independent of the order of string vectors. The 
three steps of NTC, initialization, learning, and classification, are independent of the 
order of string vectors. Since words in each string vector are sorted in the descending 
order of their frequencies, the first element is more important than the last element; 
elements should be discriminated for training NTC. The current version of NTC does not 
consider this situation. When features of string vectors are defined more sophisticatedly, 
the positions of elements of string vectors become more critical for text categorization. 
As a remaining task, we need to develop the next version of NTC which considers the 
order of elements of each string vector. 



In this work, NTC was originally intended for only text categorization; it was applied to 
only text categorization in this work. Other traditional neural networks have been applied 
to not only text categorization, but also to other pattern classification problems. For 
example, back propagation is applicable to not only classification problems, but also 
regression problems. This fact is the strong point of back propagation. As a remaining 
task, we need to find other application areas where string vectors are better representation 
of raw data than numerical vectors and compare the proposed neural network with 
traditional ones in the tasks. 
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