
Energy and Feasibility Optimal Global Scheduling
Framework on big.LITTLE platforms

Hoon Sung Chwa∗, Jaebaek Seo∗, Hyuck Yoo∗ Jinkyu Lee†, Insik Shin∗
∗Department of Computer Science, KAIST, Republic of Korea

†Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea
insik.shin@cs.kaist.ac.kr

Abstract—Motivated by ARM’s big.LITTLE, the cutting-edge
heterogeneous multi-core architecture that supports migration
between cores with different performance and energy efficiency,
this paper targets global heterogeneous multi-core scheduling,
and achieves the optimality in terms of energy consumption and
feasibility. To this end, we address the problem of determining
not only the system static configurations such as on-and-off status
and voltage/frequency, and but also the time-varying schedule of
each task. First, we abstract each task’s schedule as a rate of each
task’s workload on each cluster (big and LITTLE) and formulate
an optimization problem that achieves both energy and feasibility
optimality. We then develop a time-efficient task workload allo-
cation algorithm to assign the workload rate of each task and
the system configurations. To generate task schedules from the
algorithm, we establish feasibility-optimal scheduling rules for
a two-type heterogeneous multi-core platform, which generalize
the existing rules for a homogeneous one. Our simulation results
demonstrate that our approach yields up to 37% less energy
consumption without compromising feasibility than best-possible
partitioned scheduling approaches obtained by solving an ILP
optimization formulation.

I. INTRODUCTION

Advances on chip architectures towards multi-cores have
provided two general options for real-time scheduling: global
scheduling that allows a task to migrate from one core to an-
other, and partitioned scheduling that disallows the migration.
To explore their own advantages such as small overhead of
the former and full utilization of the latter, real-time multi-
core scheduling has been widely studied, mostly for homoge-
neous cores [1]. When it comes to heterogeneous multi-core
scheduling, very few studies have focused on global scheduling
mainly due to insufficient architectural support for migration
in commercial heterogeneous multi-core chips.

Recently, ARM has launched a two-type heterogeneous
multi-core chip, called big.LITTLE [2], which has been
deployed in the state-of-the-art smartphones, e.g., Samsung
Galaxy 4 and Note 3. The big.LITTLE architecture consists
of two types of cores: one with high-performance “big”
cores and the other with power-efficient “LITTLE” cores.
One of the most distinguishable features of the big.LITTLE
architecture is a practical support for migration; cores in two
different types (big and LITTLE) not only deploy the same
instruction-set architecture, but also share a specially designed
interconnection bus for data transfer between the clusters.
Through coupling big and LITTLE cores, the big.LITTLE
architecture is capable of global scheduling to achieve high-
performance with maximum energy efficiency. In real-time
systems research, however, almost all energy-aware scheduling
approaches for heterogeneous multi-core platforms have been

focused on partitioned scheduling rather global scheduling [3],
[4], [5], [6].

Motivated by the cutting-edge heterogeneous multi-core
architecture, we focus on global scheduling, and demonstrate
“how good global scheduling is for a big.LITTLE platform”
compared to existing partitioned scheduling approaches from
the both core utilization and energy consumption points of
view. To this end, we would like to achieve the following goals:
(a) feasibility optimality—our solution can schedule all jobs in
a task set without any job deadline miss, if there exists such
a feasible solution, and (b) energy-optimality—any feasible
solution cannot result in less energy consumption than our
solution. Then, we need to determine the following cluster con-
figurations and job schedules to achieve the goals: (i) the on-
and-off status of each cluster, (ii) the static voltage/frequency
level of each cluster, and (iii) schedule of each job (i.e., when
and where each job executes).

Since it is too complicated to determine (i)-(iii) at once,
especially (iii) during the entire time interval of interest,
we abstract each task’s schedule as a rate of each task’s
workload on each cluster. Then, we divide the problem into
two: (1) determining the cluster-level static configurations
and the workload rate of each task on each cluster, and (2)
developing a global scheduling algorithm that generates task
schedules from the input assigned in (1). For (1), we reduce
search space by deriving necessary feasibility conditions, and
then develop a task workload allocation algorithm that achieves
both energy and feasibility optimality. When it comes to (2),
we establish feasibility-optimal scheduling rules for a two-type
heterogeneous multi-core platform, which generalize existing
rules for a homogeneous one (called DP-Fair [7]).

To evaluate our approach, we perform simulations with
real system parameters from a big.LITTLE core. Our simu-
lation results demonstrate that the proposed energy/feasibility-
optimal global scheduling framework yields up to 37% less
energy consumption without compromising feasibility than
best-possible partitioned scheduling configurations obtained by
solving an ILP optimization formulation.

In summary, this paper offers the following contributions.

C1 Addressing a need for global heterogeneous schedul-
ing, motivated by the cutting-edge architecture, called
big.LITTLE;

C2 Development of the first energy-aware global schedul-
ing framework for a big.LITTLE platform consisting
of C3 and C4;

C3 Development of a low time-complexity optimal task

workload allocation algorithm for big.LITTLE based
on necessary feasibility conditions we derived; and

C4 Establishment of feasibility-optimal scheduling rules
for a two-type heterogeneous multi-core platform,
which generalizes DP-Fair rules for a homogeneous
one; and

C5 Demonstration of the effectiveness of our solution via
simulation.

The rest of the paper is structured as follows. Section II
presents our system model and model validation, followed by
the problem statement in Section III. Section IV formulates
an optimization problem that determines system configurations
and a ratio of workload of each task on the big and LIT-
TLE clusters, and develops a time efficient energy/feasibility-
optimal task workload allocation algorithm. Section V pro-
vides feasibility-optimal scheduling rules for implicit-deadline
periodic tasks running on two-type heterogeneous multi-core
platforms. Section VI evaluates our energy/feasibility global
scheduling framework. Section VII discusses related work, and
finally Section VIII concludes this paper.

II. SYSTEM MODEL AND VALIDATION

In this section, we present our system model including a
big.LITTLE platform, task model, and power model. Then,
we validate our system model via experiments on a real
big.LITTLE processor.

A. System model

big.LITTLE platforms. The big.LITTLE architecture is a
computing platform consisting of two heterogeneous clusters:
one with high-performance big cores and the other with power-
efficient LITTLE cores. Due to the nature of the big.LITTLE
architecture, a big core exhibits high energy consumption with
high performance, while a LITTLE one does the opposite
behaviors. Both clusters share not only the same instruction-set
architecture (ISA), but also a specially designed interconnec-
tion bus for data transfer between the clusters [2]. Therefore,
it is practical for a task in one cluster to migrate to the other
cluster in the middle of execution, which cannot be realized in
most existing heterogeneous multi-core architectures.

The big.LITTLE architecture provides dynamic voltage
and frequency scaling (DVFS) per cluster. The big (likewise
LITTLE) cluster provides nine (likewise five) discrete fre-
quency/voltage levels as shown in Table I [8]. We note that
the big.LITTLE architecture supports only cluster-level DVFS,
meaning that we can apply different voltage/frequency to the
big and LITTLE clusters, but cores in the same cluster operate
with the same frequency/voltage. Let fB (VB) and fL (VL)
denote the frequency (voltage) of a core in the big and LITTLE
cluster, respectively. Among the several frequency options in
Table I, let fB,max and fL,max denote the maximum frequency
for a core in the big and LITTLE cluster, respectively.

We denote the number of cores in the big and LITTLE
cluster is mB and mL, respectively.

Task model. We consider an implicit-deadline periodic task
model, in which a task τi in a task set τ is characterized by
(Ti, C

B
i , C

L
i): the period or the relative deadline Ti, and the

worst-case execution time (WCET) at the maximum frequency

upon the big and LITTLE core (denoted by CBi and CLi ,
respectively). In general, the WCET is in inverse proportional
to frequency; therefore, if a big core operates with a given
frequency fB , the WCET of τi is calculated by CBi ·

fB,max

fB
.

Likewise, the WCET of τi on a LITTLE core with a given
frequency fL is CLi ·

fL,max

fL
, to be validated in Section II-B.

Each task τi generates a potentially infinite sequence of
jobs for every Ti time units, and each job released by a task
τi has to complete its execution within Ti time units from its
release. We assume that jobs are independent, i.e., they do
not share any resources except cores and do not have any data
dependencies. A single job cannot be executed upon more than
one core (regardless of core type) in parallel. As supported by
the big.LITTLE architecture, a job can migrate from a big
core to a LITTLE one (or from a LITTLE core to a big one);
in this case, the amount of execution of τi performed on a
LITTLE core corresponds to that on a big core multiplied by
CLi /C

B
i . For example, suppose that CBi = 4 and CLi = 8;

both cluster operate with the maximum frequency; and a job
of τi executes one time unit on a big core and then migrates
to a LITTLE core. In this case, one time unit execution on a
big core corresponds 1 ·CLi /CBi = 2 time units execution on a
LITTLE core. Therefore, after migration, the job has 8−2 = 6
time units execution left on a LITTLE core.

Power model. In a big.LITTLE architecture, there are three
power states of a core: off, idle, and active. Under the off state,
a core is turned off, and it cannot execute any job until the
core becomes activated (note that it takes time and power to
activate). Once a core is activated (i.e., turned on), the core is
on the either idle or active state. A core is said to be on the
active state if the core has a currently-executing job, or on the
idle state otherwise. Then, the power consumption of a core
(denoted by Pcore) is expressed as

Pcore = Pstatic + Pdynamic, (1)

where Pstatic is the power for the core to keep ready to
execute (on the either active or idle state), and Pdynamic is the
additional power to execute a job. In other words, a core on the
off, idle, and active state exhibits (a) Pstatic = Pdynamic = 0,
(b) Pstatic > 0 and Pdynamic = 0, and (c) Pstatic, Pdynamic >
0, respectively. The two terms are modelled as follows [9]:
Pstatic = Cstatic · V ρ and Pdynamic = Cdynamic · fV 2, where
Cstatic, ρ, and Cdynamic are constants depending on core types.

In addition to the power consumption of each core, a
cluster of a big.LITTLE processor consumes power so as to
support cores in the cluster to execute, called the uncore power
consumption (denoted by Puncore) [9]. That is, if at least one
core in a cluster is on the either idle or active state, Puncore is
positive; otherwise, Puncore is zero.

In order to obtain the values of the hardware dependent
parameters (i.e., Cstatic, ρ, and Cdynamic), we measured the
power consumption on a big.LITTLE development board for
available operating frequency/voltage combinations, to be pre-
sented in Section II-B.

B. Model validation

Experiment setup. We use the ODROID-XU+E board [10]
comprising of four Cortex-A15 (“big”) cores along with four

big LITTLE
vB : voltage (V) 0.93 0.96 1.0 1.04 1.08 1.1 1.15 1.2 1.23 vL: voltage (V) 0.9 0.94 1.01 1.09 1.2
fB : frequency (MHz) 800 900 1000 1100 1200 1300 1400 1500 1600 fL: frequency (MHz) 250 300 400 500 600

TABLE I. FREQUENCY/VOLTAGE LEVELS OF A BIG AND LITTLE CORE

(a) Task execution model validation for 5 benchmarks

(b) Power model validation

Fig. 1. Model validation

Cortex-A7 (“LITTLE”) cores. The ODROID-XU+E board is
equipped with sensors to measure the power consumption of
the big and LITTLE clusters individually. In our experiments,
we utilize only one big and one LITTLE core. The remaining
cores in each cluster are logically turned off using system calls,
such that no jobs are scheduled on them. We set the voltage and
frequency for each cluster using the Linux userspace governor.

We use five types of benchmarks: CPU intensive, cache
intensive, memory intensive, I/O intensive with the buffer
cache, and I/O intensive without the buffer cache. In the
CPU intensive benchmark, a process runs a busy loop with
no memory accesses. In the cache intensive benchmark, a
process strides through a memory region performing read-
modify-write cycles on successive cache lines. The size of the
region is twice of the L1 cache size. A process in the memory
intensive benchmark is the same as that in the cache intensive
benchmark except increased working set size to twice of the L2
cache size of the big cluster. In the I/O intensive benchmarks,
a process writes an image to a file with/without a buffer cache.

Task execution model validation. In order to validate
our task execution model, we run the above five types of
benchmarks 25 times for each frequency/voltage level, and
measure the average CPU time. Figure 1(a) shows that each
benchmark exhibits different performance between the big and
LITTLE clusters, but the CPU time is in inverse ratio to
frequency levels within the same cluster. Thereby, the formular

A15 core (big) A7 core (LITTLE)
Cstatic 1.478 1.191
ρ 0.379 0.757
Cdynamic 0.471 0.153

TABLE II. POWER MODEL PARAMETERS FOR A BIG AND LITTLE
CORE

CBi ·
fB,max

fB
discussed in our task model is valid in calculating

the WCET of τi on a big core with a given frequency fB .
Likewise, CLi ·

fL,max

fL
is valid on a LITTLE core.

Power model validation. To validate that our power model
adequately represents real hardware behaviors, we measure the
real-time power consumption and obtain the model parameters.
We run the CPU intensive benchmark for each frequency
level during 5 minutes, and read the power sensor data. The
measurement results are shown in Figure 1(b). We choose a
linear regression method to obtain the parameters, and Table II
shows the estimated parameters.

III. PROBLEM STATEMENT

As mentioned in the introduction, this paper considers
global preemptive scheduling on a big.LITTLE platform, and
aims at achieving the following goals:

G1. Feasibility-optimality—our solution schedules all jobs
in a task set without any deadline miss of a job, as
long as there exists such a feasible solution; and

G2. Energy-optimality—any feasible solution cannot yield
less energy consumption than our solution.

To achieve the goals, we determine the following cluster
configurations and job schedules:

D1. On-and-off status of each cluster;

D2. Static voltage/frequency level of each cluster; and

D3. Schedule of each job, i.e., the time intervals in and
the core on which each job executes.

For D1, we have three options: (a) both big and LITTLE
clusters are turned on; (b) only the big cluster is turned on;
and (c) only the LITTLE cluster is turned on. Note that we do
not consider a core-level on-and-off policy, because it has been
demonstrated that Pstatic is negligible compared to Puncore [9],
implying we hardly benefit from the core-level on-and-off
policy in terms of energy consumption. Thereby, we assume
that all cores are activated in a cluster when the cluster is
turned on. Let δB and δL denote the on-and-off status of the
big and LITTLE clusters, i.e., 1 if on, 0 otherwise.

When it comes to D2, we have cluster-level discrete choices
as shown in Table I, since the big.LITTLE architecture does
not support core-level voltage/frequency regulation. Here, we
consider static (rather than dynamic) voltage/frequency scaling
on which the operating voltage/frequency does not change over
time. In the previous literatures [11], [12], the energy optimal
frequency is a constant when each job presents its worst-
case workload behavior with the convex power consumption
function. Therefore, the static scaling not only is simpler, but

also minimizes the worst-case energy consumption (when each
job presents its worst-case execution time). Such a worst-
case behavior of energy consumption is important for mobile,
battery-powered devices in which a big.LITTLE processor is
deployed.

For D3, it is too complex to determine all the job schedules
during the entire time interval of interest, because we should
decide not only “when”, but also “where” to execute a job,
which yields different speed of execution and energy consump-
tion. Therefore, we abstract the job schedule as the ratio of
workload of its invoking task. This is because, the ratio of
workload of a task not only indicates the amount of execution
of the task on each cluster, but also determines the duration
for a core to be on the active state due to the task’s execution,
which can be translated into the energy consumption. Let xBi
and xLi denote the fraction ratio of workload for which a task τi
executes on the big and LITTLE clusters, respectively, where
xBi + xLi = 1. If xBi = 1 (xLi = 1), τi is executed only
on a big (LITTLE) cluster. If 0 < xBi , x

L
i < 1 holds, τi is

fractionally executed on both big and LITTLE clusters. Using
the ratio of workload of each task on each cluster, we divide the
problem into the following two steps. At step 1, we determine
how much portion of a task workload will be executed on
big and LITTLE clusters (i.e., xBi and xLi for every τi ∈ τ).
Then, at step 2, we develop a global scheduling algorithm that
generates job schedules for given xBi and xLi for every τi ∈ τ ,
determined by step 1.

We now summarize our approach to determining D1, D2
and D3 that satisfies G1 and G2 as follows.

Given a feasible task set τ of periodic real-time tasks
and a big.LITTLE platform comprising mB big cores
and mL LITTLE ones,

Step 1. Determine the on-and-off status (δB and δL) and static
frequency (fB and fL) of the big and LITTLE clusters
and the ratio of workload of each task on the big
and LITTLE clusters (xBi and xLi for every τi ∈ τ),
such that they yield the energy-optimality without
compromising feasibility; and

Step 2. Develop a global scheduling algorithm that generates
job schedules from the values assigned by step 1 such
that all jobs meet their deadlines.

To summary, step 1 performs energy/feasibility-optimal
task workload allocation, and step 2 develops feasibility-
optimal global scheduling algorithm, which are presented in
Sections IV and V, respectively. We then evaluate our solution
in Section VI.

IV. ENERGY/FEASIBILTY-OPTIMAL TASK WORKLOAD
ALLOCATION

In this section, we present our approach to determining the
on-and-off status and static frequency of both clusters and the
ratio of workload of each task on both cluster (i.e., δB , δL,
fB , fL, {xBi }, and {xLi }), explained in step 1 in Section III.
To this end, we first formulate an optimization problem that
achieves both energy/feasibility optimality. Then, we derive
necessary feasible conditions for the solution, and based on the
conditions, we present a time-efficient task workload allocation
algorithm.

A. Problem formulation

Based on our power model, we can calculate the energy
consumption of each cluster in an interval. Since job schedules
are repeated at every hyperperiod of a task set (denoted and
calculated by H = LCM(∪iTi)), we now calculate energy
consumption in an interval of length H .

While Pstatic and Puncore only depend on the on-and-
off status of the big and LITTLE clusters (i.e., δB and δL),
Pdynamic additional relies on the execution time of jobs in each
cluster. To this end, we calculate the amount of execution of
a job of τi in each cluster. Since the execution time of a job
of τi is CBi ·

fB,max

fB
if it is fully executed on a big core,

xBi · CBi ·
fB,max

fB
is the amount of actual execution of a job

of τi on a big core. Therefore, we calculate the utilization of
τi’s execution on the big and LITTLE clusters (denoted by uBi
and uLi) as follows:

uBi = xBi · CBi ·
fB,max
fB

· 1
Ti
, uLi = xLi · CLi ·

fL,max
fL

· 1
Ti
. (2)

Note that uBi with xBi = 1 is said to be the maximum
utilization of τi’s execution on the big cluster, and denoted
by uB,maxi ; likewise, uL,maxi denotes uLi with xLi = 1.

Then, in an interval of length H , the cumulative execution
time of jobs of τi on the big (LITTLE) cluster is H · uBi
(H · uLi). Then, the cumulative energy consumption in the big
and LITTLE clusters in an interval of length H (denoted by
EB and EL) is calculated as follows:

EB = δB ·H ·
(
PBuncore +mB · PBstatic + PBdynamic ·

∑
τi∈τ

uBi

)
,

(3)

EL = δL ·H ·
(
PLuncore +mL · PLstatic + PLdynamic ·

∑
τi∈τ

uLi

)
.

(4)

Note that if the big (LITTLE) cluster is turned off, i.e., δB = 0
(δL = 0), the energy consumption of the big (LITTLE) cluster
EB (EL) is zero. Also, for simplicity of presentation, we
only concern “frequency” instead of “voltage/frequency”; as
shown in Table I, if frequency is determined, the corresponding
voltage is given.

Then, we formally present the optimization problem (de-
noted by Energy/Feasibility-OPT) of determining the on-and-
off status and static frequency of both clusters and the ratio
of workload of each task on both cluster (i.e., δB , δL, fB , fL,
{xBi }, and {xLi }), as follows.

Minimize EB(δB , fB , {xBi }) + EL(δL, fL, {xLi }),
Subject to C1: ∀τi ∈ τ, xBi + xLi = 1,

C2: ∀τi ∈ τ, uBi + uLi ≤ 1,

C3:
∑
τi∈τ

uBi ≤ mB ,

C4:
∑
τi∈τ

uLi ≤ mL,

C5: ∀τi ∈ τ, 0 ≤ xBi , xLi ≤ 1.

Here, the objective function achieves the energy-optimality,
while constraints C1–C5 yields feasibility-optimality. Con-
straint C1 specifies that every task must receive its appropriate
amount of execution. Constraint C2 asserts that each task
cannot be executed upon both clusters at the same time.
Constraints C3 and C4 assert that total workload allocated on
each cluster should be less than or equal to the capacity of
each cluster. Those constraints correspond to the feasibility
conditions presented in [13].

Note that if the big (LITTLE) cluster is turned off, we set
mB (mL) to zero to apply non-availability of the cluster.

When we calculate the optimization problem, we do not
assume any particular relation between the big and LITTLE
cluster in terms of energy consumption and execution speed.
In a real world, a big core consumes more power and takes
less job execution time than a LITTLE core. However, we do
not rely on such a relation when we calculate the optimization
problem; instead, we seek to find a general solution.

B. Necessary feasible conditions

There are many ways to solve our optimization problem,
but we would like to solve it in an efficient manner in terms of
time-complexity. Since there are only several cluster configu-
rations of the on-and-off status and static frequency, we make
solutions of {xBi , xLi } for all possible cluster configurations
(i.e., δB , δL, fB and fL) and choose the best solution among
all the solutions.

To solve our optimization problem for given cluster con-
figurations, this subsection investigates some necessary condi-
tions for each task’s ratio of workload on the big and LITTLE
clusters (i.e., {xBi , xLi }), which will be a basis for a solution
algorithm to be presented in Section IV-C.

By the parallelism restriction constraint C2, if there exists
a task τi such that uB,maxi > 1 and uL,maxi > 1 hold, the
task cannot satisfy the constraint, which leads to infeasibility.
However, if uL,maxi > 1 and uB,maxi ≤ 1 hold, we may find
a feasible solution by moving some workload of τi from the
LITTLE to the big cluster. In this case, there must exist the
minimum utilization of τi on the big core so as to satisfy the
constraint C2. Conversely, if uL,maxi ≤ 1 and uB,maxi > 1
hold, there must exist the minimum utilization of τi on the
LITTLE core with the same reasoning. If uL,maxi ≤ 1 and
uB,maxi ≤ 1 hold, a task τi always satisfies constraint C2.
Recall that the maximum utilization of τi’s execution on the
big and LITTLE clusters is uB,maxi = CBi ·

fB,max

fB
· 1
Ti

and
uL,maxi = CLi ·

fL,max

fL
· 1
Ti

, respectively. Then, the following
lemma calculates such a minimum utilization.

Lemma 1: The minimum value of the utilization of each
task on the big and LITTLE clusters (denoted by loBi and loLi)
is calculated by

loBi =

u
L,max
i −1

u
L,max
i −uB,max

i

, if uL,maxi > 1,

0, otherwise.
(5)

loLi =

u
B,max
i −1

u
B,max
i −uL,max

i

, if uB,maxi > 1,

0, otherwise.
(6)

Proof: The minimum value of the utilization of each
task on the big cluster (loBi) is induced by constraint C2. In
constraint C2, if we substitute xLi to 1−xBi based on constraint
C1, we can calculate loBi . The same holds for loLi . Details are
given in Appendix A.

Once loBi , loLi is calculated, the rest of workload ratio (i.e.,
1− loBi − loLi by constraint C1) for each task can be properly
allocated to each cluster as long as cluster capacity constraints
meet. We let yBi and yLi denote the workload ratio excluding
loBi and loLi (i.e., xBi = yBi + loBi and xLi = yLi + loLi),
respectively. Then, the constraints C1–C5 for guaranteeing
feasibility can be reduced as

C1: ∀τi ∈ τ, yBi + yLi = 1− loLi − loBi ,
C3:

∑
τi∈τ

yBi · uB,maxi ≤ mB −
∑
i

loBi · uB,maxi ,

C4:
∑
τi∈τ

yLi · uL,maxi ≤ mL −
∑
i

loLi · uL,maxi ,

C5: ∀τi ∈ τ, 0 ≤ yBi , yLi ≤ 1− loLi − loBi .

Note that constraint C2 is removed. This is because con-
straint C2 is never violated if xBi and xLi is assigned at least
loBi and loLi by lemma 1, respectively.

C. Solution to the optimization problem

Since we reduce the problem by allocating loBi and loLi
amount of utilization to the big and LITTLE clusters, respec-
tively, the remaining step is to determine {yBi } and {yLi } such
that total energy consumption is minimized while satisfying
C1–C5.

Each task has different energy efficiency between clusters.
A task τi consumes energy at the rate of uB,maxi ·PBdynamic if
fully allocated on the big cluster, and uL,maxi ·PLdynamic on the
LITTLE cluster. We define efi as τi’s energy efficiency ratio
of the big cluster to the LITTLE cluster, expressed as

efi =
uB,maxi · PBdynamic

uL,maxi · PLdynamic

. (7)

If efi > 1, executing τi on the LITTLE cluster is more energy-
efficient than the big cluster; on the contrary, if efi < 1, the
converse holds. Thereby, if there is no capacity limit for each
cluster, allocating all of the remaining workload of τi to its
energy-efficient cluster consumes the least energy.

However, each cluster has its capacity limit as shown in
constraints C3 and C4, so it might be impossible to allocate all
τi with efi > 1 on the LITTLE cluster (or all τi with efi < 1
on the big cluster). Consequently, we need to rearrange each
task workload allocation in order to satisfy cluster capacity
limits.

We design an optimal task workload allocation algorithm
based on the understanding of per-task energy efficiency on
each cluster (see Algorithm 1). The task workload allocation
works by two stages: 1) allocating workload in a way that
consumes the minimum energy assuming infinity capacity of
both clusters and 2) rearranging the workload to satisfy the
feasibility conditions, especially related to cluster capacity con-
straints. Before stage 1), we calculate the minimum workload

Algorithm 1 Optimal-Task-Workload-Allocation
1: τL ← {τi|efi ≥ 1}
2: τB ← {τi|efi < 1}
3: Allocate {loBi }, {loLi } according to Lemma 1
4: Allocate yLi ← 1− loBi − loLi , yBi ← 0 for all tasks in τL

5: Allocate yLi ← 0, yBi ← 1− loBi − loLi for all tasks in τB

6: if Both C3 and C4 are satisfied then
7: return {xBi |xBi = yBi + loBi }, {xLi |xLi = yLi + loLi }
8: else if Both C3 and C4 are not satisfied then
9: return not feasible

10: else if Only C3 is satisfied then
11: repeat
12: find τk with the closest efk to 1 in τL

13: if
∑
i y
L
i ·uL,maxi − yLk ·uL,maxk > mL−

∑
i lo

L
i ·uL,maxi

then
14: yLk ← 0, yBk ← 1− loBk − loLk
15: τL ← τL \ {τk}
16: else
17: yLk ←

∑
i y

L
i ·u

L,max
i −(mL−

∑
i lo

L
i ·u

L,max
i)

u
L,max
i

18: end if
19: if C3 is violated then
20: return not feasible
21: end if
22: until C4 is satisfied
23: else if Only C4 is satisfied then
24: Do the corresponding process to lines 11–22.
25: end if
26: return {xBi |xBi = yBi + loBi }, {xLi |xLi = yLi + loLi }

ratio (loBi , lo
L
i) that should be allocated in the big and LITTLE

clusters and allocate them on each cluster.

In stage 1), Algorithm 1 partitions a task set into two
groups according to energy efficiency on a cluster. Let τB and
τL denote a collection of tasks that are more energy-efficient
when executing on the big and LITTLE clusters, respectively
(lines 1–2). Then, we allocate the rest of workload (except
loBi , lo

L
i) of all tasks in τB to the big cluster and the rest of

workloads of all tasks in τL to the LITTLE cluster (lines 4–5).

In stage 2), we check whether the allocation done by stage
1) satisfies cluster capacity constraints C3 and C4. There are
4 cases: i) if both C3 and C4 are satisfied, the allocation done
by stage 1) is an energy optimal solution as well as satisfying
all feasibility conditions (lines 8–9); ii) if both C3 and C4 are
not satisfied, there is no feasible workload allocation, meaning
that the task set is not feasible (lines 6–7); iii) if only C3 is
satisfied, it requires to move some workload allocated on the
LITTLE cluster to the big cluster until it satisfies C4 (lines
10–22); and iv) if only C4 is satisfied, it requires to move
some workload allocated on the big cluster to the LITTLE
cluster until it satisfies C3 (lines 23–25). In the process of
rearranging workload for cases iii) and iv), if no available big
cluster capacity to accommodate more remaining workload,
there is no feasible workload allocation (lines 19–21). The
key issue in rearranging workload is to choose some tasks
whose workload will be re-allocated. When some workload
is moved from the energy-efficient cluster to the other one,
energy consumption is supposed to increase. We need to move
the workload in a way that the amount of increased energy
consumption arising from workload migration is minimized.
In addition, it should be done by the most beneficial way to
become feasible. We show that choosing tasks in the order of
the closest efi to 1 not only minimizes the amount of increased

energy consumption, but also is beneficial for feasibility in the
following theorem.

We now prove that our task workload allocation algorithm
achieves both feasibility-optimality and energy-optimality.

Theorem 1: Our task workload allocation presented in
Algorithm 1 achieves both feasibility-optimality and energy-
optimality.

Proof: We only consider the case that both clusters are
turned on (i.e., δB = 1 and δL = 1) since in the other cases that
one of the clusters is turned off, there is only one configuration
of task allocation where all tasks are allocated in the cluster
turned on.

Algorithm 1 works by two stages: 1) allocating workload
of all tasks in τL to the LITTLE cluster and workload of all
tasks in τB to the big cluster (lines 1-5) and 2) rearranging the
workload to satisfy the feasibility conditions, especially related
to cluster capacity constraints (lines 6-25). After stage 1), there
are 4 cases: i) both C3 and C4 are satisfied; ii) both C3 and
C4 are not satisfied; iii) only C3 is satisfied; iv) only C4 is
satisfied. We first show the energy-optimality for each case of
i) - iv), then, prove the feasibility-optimality later. Recall that
τL = {τi|efi ≥ 1} and τB = {τi|efi < 1}. For any variable
X , we denote by ∆X the amount of the variation of X through
the remaining of this proof.

We now prove energy-optimality. We denote by ∆UL =∑
i ∆uLi the amounts of workload moved from the LITTLE

cluster to the big cluster, where ∆uLi is each amount of
workload of τi in ∆UL. If we move ∆UL to the big cluster,
the change amount of the workload on the big cluster (denoted
as ∆UB) is calculated as

∆UB =
∑
i

∆uBi =
∑
i

uB,maxi ·∆yBi

=
∑
i

uB,maxi · (−∆yLi) =
∑
i

uB,maxi · (−
∆uLi

uL,maxi

)

=
∑
i

−∆uLi ·
uB,maxi

uL,maxi

. (8)

Then, the amount of the variation of total energy consump-
tion on both the big and LITTLE clusters (denoted by ∆E)
is

∆E = ∆EL + ∆EB

= H · PLdynamic ·
∑
i

∆uLi + H · PBdynamic ·
∑
i

∆uBi

= H · PLdynamic ·
∑
i

∆uLi + H · PBdynamic ·
∑
i

−∆uLi ·
uB,maxi

uL,maxi

= H ·
∑
i

∆uLi · (PLdynamic − PBdynamic ·
uB,maxi

uL,maxi

)

= H · PLdynamic ·
∑
i

∆uLi · (1− efi) (9)

Note that all variables in (9) are constant except ∆uLi .

In case i), if τi ∈ τL moves from the LITTLE cluster to the
big cluster, ∆uLi < 0 and 1 − efi ≤ 0, thus ∆E ≥ 0. If
τi ∈ τB moves from the big cluster to the LITTLE cluster,
∆E > 0 based on the same reasoning. It means moving any

task increases E in this case. Therefore, stage 1) of Algorithm
1 is energy optimal, in case i).

In case ii), we prove that τ is not feasible later.

In case iii), we should move the specific amount of the
workload from the LITTLE cluster to the big cluster, so that C4
is not violated. When τi ∈ τL moves from the LITTLE cluster
to the big cluster, energy consumption is supposed to increase
since ∆uLi < 0 and efi ≥ 1. When we move to some amount
of the workload in the LITTLE cluster, choosing tasks in the
order of the closest efi to 1 (i.e., |1 − efi| has the minimum
value) minimizes ∆E in (9). Therefore, moving tasks in the
order of the closest efi to 1 in τL to the big cluster is optimal
in energy consumption for case iii).

In case iv), moving tasks in the order of the closest efi to 1 in
τB to the LITTLE cluster is optimal in energy consumption
based on the same reasoning shown in case iii).

We now prove feasibility-optimality. We consider the fol-
lowing task allocation process P:

P1. allocating workload of all tasks to the LITTLE cluster
P2. moving tasks in the order of the smallest efi from the
LITTLE cluster to the big cluster until

∑
i u

L
i = WL.

We prove that (a) process P minimizes
∑
i u

B
i when the value

of
∑
i u

L
i is fixed as WL and (b) stage 2) of Algorithm 1

satisfies the feasibility-optimality for each case of i) - iv).

Proof of (a): during process P2, when we move tasks from the
LITTLE cluster to the big cluster (i.e., ∆UL < 0), according
to Eq. (8),

∆UB =
∑
i

−∆uLi ·
uB,maxi

uL,maxi

= −
PLdynamic

PBdynamic

·
∑
i

∆uLi · efi (10)

For the same amount of ∆UL < 0, in order to minimize ∆UB ,
we should move tasks in the order of the smallest efi from
the LITTLE cluster to the big cluster. Therefore, (a) is true.

Proof of (b):
In case i), all feasibility conditions are already satisfied.

In case ii), by (a), moving tasks in the order of the smallest
efi from the LITTLE cluster to the big cluster minimizes UB
but ∆UB > 0 (∵ ∆uLi < 0 → ∆uBi > 0). Therefore, there
is no way to decrease UL and UB at the same time (i.e., τ is
not feasible in case ii)).

In case iii), the closest efi to 1 in the LITTLE cluster
corresponds to the smallest efi in the cluster since τi ∈ τL.
By (a), moving tasks in the order of the closest efi to 1 in τL
to the big cluster minimizes UB . Therefore, if C3 is violated
in the process of P2 where WL = mL, τ is not feasible.

In case iv), Algorithm 1 satisfies the feasibility-optimality
based on the same reasoning shown in case iii).

Therefore, Algorithm 1 satisfies feasibility/energy optimal-
ity.

Complexity. We denote by n the number of tasks in a task
set. For a given combination of frequency settings, Algorithm 1
requires O(n log n) to sort a task set. Since we have only a few
combinations of cluster configurations (3 for {δB , δL}, 9 for
fB and 5 for fL), it takes only O(A ·n log n) time-complexity
to solve the optimization problem in Section IV-A, where A is

a small constant. We note that according to our optimization
formulation presented in Section IV-A, if a frequency combi-
nation is given, it can be solved by a Linear Programming (LP)
solver. LP solvers can solve a LP formulation in polynomial
time, but the polynomial is generally known as a higher degree.

V. FEASIBILITY-OPTIMAL GLOBAL SCHEDULING

While it has been proved that EDF is feasibility-optimal
on a uniprocessor platform, it has been challenging to develop
feasibility-optimal scheduling algorithm on a homogeneous
multi-core platform. Starting from PFair [14], some feasibility-
optimal scheduling algorithms have been developed, but they
are not as intuitive as EDF. Recently, a study [7] has focused on
derivation of general rules that enable a scheduling algorithm
to be feasibility-optimal, and therefore; the study have a
significant impact on developing feasibility-optimal scheduling
algorithms in that the only thing we should consider is to
satisfy the general rules.

Now, the big.LITTLE multi-core processor entails the need
of heterogeneous global scheduling. However, there are few
studies for the scheduling; the only known study [13] intro-
duced a feasible schedule in the process of deriving the exact
feasibility condition, but it is complicated and less intuitive.

To this end, we suggest optimal scheduling rules for
implicit-deadline periodic tasks running on two-type hetero-
geneous multi-core platforms. Greg Levin et al. [7] developed
DP-Fair which guides the scheduling rules for the case of a
homogeneous multi-core platform. We generalize DP-Fair to
a heterogeneous multi-core platform.

DP-Fair aims at scheduling tasks by following the propor-
tionate fairness requirement, on which each task is executed
proportionally to its utilization. DP-Fair shows that imposing
the fairness requirement only at job deadlines suffices to
reach the optimality. It partitions time into slices based on
deadlines of all jobs invoked by a task set (referred to as
deadline partitioning). To ensure the fairness requirement at
every deadlines, each job is assigned its execution requirement
proportional to its utilization within each time slice. We note
that if every job can be executed permanently at a rate equal
to its utilization (referred to as a fluid scheduling model),
the fairness requirement can be easily satisfied for all jobs.
However, it is impossible to implement such a fluid schedule
on practical platforms since one core cannot execute more
than one task simultaneously. Thereby, DP-Fair suggests some
scheduling rules for designing practical schedulers to guarantee
the optimality.

We now explain how to generalize DP-Fair to a hetero-
geneous multi-core platform and present the scheduling rules
for optimal schedulers to obey. After deadline partitioning,
the k-th time slice (denoted by σk) is [tk−1, tk) of length
lk = tk − tk−1.

Within the time slice σk, each task τi is then assigned its
execution requirement uBi · lk, uLi · lk on both big and LITTLE
clusters, respectively. As scheduling decisions are made over
time, the remaining execution of task τi at time t in σk on
big and LITTLE clusters is denoted by RBi (t) and RLi (t),
respectively. At each time t, a task is said to be a migrating
task when its execution remaining is on both big and LITTLE
clusters (i.e., RBi (t) > 0 and RLi (t) > 0), and a task is
said to be an partitioned task when its execution remaining

is solely on either big or LITTLE cluster (i.e., RLi (t) = 0
or RBi (t) = 0). A migrating task at time t can become a
partitioned one whenever no execution remains either big or
LITTLE cluster after t.

The major challenge to generalize DP-Fair to a heteroge-
neous multi-core platform is to schedule migrating tasks. If
there are only partitioned tasks, we can consider each cluster
as an independent homogeneous platform and apply DP-Fair
in an identical way. However, if there are migrating tasks, two
new issues arise: (a) we need to ensure that migrating tasks
should execute its workload on at most one cluster at each time
instant while they should finish all execution requirements on
both big and LITTLE clusters at the end of each time slice,
and (b) we need to determine which cluster executes how many
migrating tasks in a way that both clusters successfully process
all of the allocated workloads at every time slice.

To address issue (a), we define the task-level local laxity
of τi at time t (denoted by Li(t)) as the difference between
the remaining time in a time slice σk and the sum of execution
remaining on each cluster before the time slice, and it is
presented as

Li(t) = (tk − t)− (RBi (t) +RLi (t)). (11)

At the beginning of a time slice σk, RBi (tk−1) is uBi · lk,
RLi (tk−1) is uLi · lk. Once a job of a task has zero task-level
local laxity, it should always be executed on either the big
or LITTLE cluster until the end of time slice; otherwise, the
job will miss its deadline. To address issue (b), we define the
cluster-level local laxity at time t, denoted by LB(t) (LL(t)),
as the difference between the total available capacity of the
big (LITTLE) cluster from t to at the end of a time slice and
the total remaining workloads on the big (LITTLE) cluster,
expressed as

LB(t) = mB · (tk − t)−
∑
i

RBi (t), (12)

LL(t) = mL · (tk − t)−
∑
i

RLi (t). (13)

If cluster-level local laxity of the big cluster at t (i.e., LB(t))
reaches zero, all the big cores should execute jobs until the
end of the time slice; otherwise, at least one job will miss its
deadline due to insufficient supply. The same holds for cluster-
level local laxity of the LITTLE cluster.

With the notions of task-level and cluster-level local laxi-
ties, we present our DP-Fair-Hetero scheduling rules.

Definition 1: (DP-Fair-Hetero scheduling for time slices)
A scheduling algorithm belongs to DP-Fair-Hetero if it sched-
ules jobs within a time slice σk according to the following
rules:

R1: Always allocate mB jobs on the big cores at time t
if its cluster-level laxity is zero (i.e., LB(t) = 0), and
allocate mL jobs on the LITTLE cores at time t if
its cluster-level laxity is zero (i.e., LL(t) = 0);

R2: Always run all the jobs with zero task-level local
laxity (i.e., Li(t) = 0);

R2-1: Assign partitioned tasks with zero laxity to
cores prior to assigning migrating tasks with
zero laxity to the rest of cores;

R3: Never run a job with no workload remaining on both
clusters in the slice.

We now prove that any DP-Fair-Hetero scheduler is
feasibility-optimal on two-type heterogeneous multi-core plat-
forms.

Theorem 2: If a periodic implicit-deadline task set τ is
feasible, any DP-Fair-Hetero scheduling algorithm always
schedules the task set without any deadline miss.

Proof: The basic idea of the proof is to show that if a
job of task τi in a task set τ misses its deadline when it is
scheduled by DP-Fair-Hetero, the total workload allocated on
the big or LITTLE cluster is larger than the capacity of the big
or LITTLE cluster, which violates at least one of constraints
C3 and C4, so that it contradicts the assumption that the task
set is feasible. Details are given in Appendix B.

VI. EVALUATION

This section presents simulation results to evaluate our
energy/feasibility-optimal global scheduling framework.

Simulation environment. We have three input parameters:
(a) the number of cores on each big and LITTLE cluster (mB ,
mL), (b) discrete frequency/voltage levels of each big and
LITTLE core, and (c) individual task parameters (Ti, C

B
i , C

L
i).

We set platform-specific parameters (a) and (b), to the same
as the ones employed in the ODROID-XU+E board [8], i.e.,
mB = 4, mL = 4, and the frequency/voltage levels as
shown in Table I. Our power model with Table II is used to
estimate the total energy consumption. Task sets are generated
based on a technique proposed earlier [15]. For each task
τi, Ti is uniformly chosen in [100, 1000], and CLi and CBi
are chosen based on bimodal parameters in [100, Ti] and
[100, CLi], respectively. For each bimodal parameter from 0.1
to 0.9 with the step of 0.1, we generate 1,500 task sets as
follows. Initially, we generate a set of mB+1 tasks, and create
a new set by adding a new task into the old set until the task
set passes the feasibility constraints under the setting of both
clusters turned on with the maximum frequencies.

We compare our global scheduling framework (annotated
as Our-Global) with partitioned scheduling approaches (anno-
tated as ILP-Partitioned). Partitioned approach statically assigns
each task to a core, and task migration is not allowed. In ILP-
Partitioned, task-to-core assignment is formulated by altering
cluster-level task workload variables (xBi and xLi) in our
optimization formulation (Energy/Feasibility-OPT) with core-
level zero-or-one variables which indicate the assignment of a
task to a core. It is then solved by Integer Linear Programming
(ILP).

Simulation results. To demonstrate how good global
scheduling is for a big.LITTLE platform compared to par-
titioned scheduling in terms of both feasibility and energy
consumption, we compare the number of task sets feasible
by each scheduling approach and total energy consumption to
schedule a feasible task set.

Figure 2 plots the number of task sets feasible by Our-
Global and ILP-Partitioned with different maximum utilization
on the big cluster (denoted by UB,max def

=
∑
i u

B,max
i). Basi-

cally, Our-Global is generalization of ILP-Partitioned, so Our-
Global dominates ILP-Partitioned. Our-Global guarantees feasi-

Fig. 2. The number of feasible task sets by ILP-Partitioned and Our-
Global

Fig. 3. Energy consumption ratios of ILP-Partitioned to Our-Global

ble solutions for all generated task sets while ILP-Partitioned
finds 10% less feasible task sets than Our-Global.

Figure 3 plots energy consumption ratios of ILP-Partitioned
relative to Our-Global with different maximum utilization on
the big cluster. We note that we only show the results for
feasible task sets by both approaches. We separate the gen-
erated task set into two subsets: the task sets of which all
task workload is allocated only on the LITTLE cluster by
Our-Global, and the others (denoted by LITTLE-only and big-
LITTLE, respectively).

The LITTLE-only task sets are distributed on the range
of the utilization from 0.5 to 3.5, and Our-Global makes
significant differences in energy consumption compared to
ILP-Partitioned for the LITTLE-only task sets. ILP-Partitioned
consumes up to 60% more energy than Our-Global. This is
because ILP-Partitioned decide to turn on both big and LITTLE
clusters, while Our-Global only uses the LITTLE cluster in
the task workload allocation. For example, we observe that
there exists a case that Our-Global uses only LITTLE cluster
with 500MHz but ILP-Partitioned uses both big and LITTLE
clusters with 800MHz and 600MHz respectively for a task
set with UB,max = 2.65, so ILP-Partitioned consumes 87%
more energy than Our-Global. Our-Global has 25% more such
task sets that run on LITTLE cluster only compared to ILP-
Partitioned. In general, a LITTLE core consumes less power
than a big core. Thereby, if the LITTLE cluster can accommo-
date all workload (i.e., the big cluster is turned off), it can save
much energy compared to leaving both clusters turned on.

The big-LITTLE task sets are widely spread to all the
utilization distributions, and ILP-Partitioned consumes 11%
more energy than Our-Global on average. Both Our-Global
and ILP-Partitioned turn on both big and LITTLE clusters
but different frequency settings. Our-Global can accommodate
task workload with lower frequency levels. For example, there
exists a case that Our-Global sets the frequency configuration
of the big and LITTLE clusters to 1100MHz and 600MHz
but ILP-Partitioned sets the configuration to 1500MHz and
600MHz for a task set with UB,max = 6.05, so ILP-Partitioned
consumes 35% more energy than Our-Global. A gap between
Our-Global and ILP-Partitioned is increased smoothly as the
utilization increases; it starts to decrease from 5.5. As the
utilization increases, there is a less room for saving energy,
because Our-Global and ILP-Partitioned reach to the maximum
frequency for each cluster.

With the benefit of global scheduling, Our-Global can
distribute all workload in the most energy-efficient way, since
it not only has no restriction on task migration in contrast to
ILP-Partitioned but also utilizes such a property effectively.

VII. RELATED WORK

Energy-aware real-time scheduling. In past decades,
energy-aware real-time scheduling has been widely explored
for both uniprocessor and multi-core platforms [16], [17]. For
periodic tasks on uniprocessor platforms, Aydin et al. [11]
showed that an energy-optimal schedule would execute all the
tasks at a constant frequency to fully utilize the processor under
the assumption that each task presents its worst-case workload
behavior with the convex power consumption function.

Studies on homogeneous multi-core platforms can be
classified into partitioning and global scheduling of periodic
tasks. Aydin and Yang [12] addressed the problem of par-
titioning periodic tasks by considering both feasibility and
energy consumption. They showed that the problem is NP-
hard and developed several heuristic algorithms by exploiting
the well-known bin-packing algorithms. They experimentally
showed that the Worst-Fit Decreasing (WFD) algorithm always
achieves the best energy conservation when task utilization
ordering is known a priori. A comprehensive survey of energy-
efficient partitioned scheduling under diverse task and power
models with practical consideration is provided in [16], [17].
On the contrary to partitioned scheduling, there are some
energy-efficient global scheduling algorithms with guarantees
of feasibility [18], [19], [20], [21]. Funaoka et al. [18] proposed
real-time static voltage and frequency scaling (RT-SVFS) tech-
niques based on an optimal real-time scheduling algorithm
for homogeneous multi-core platforms. The techniques are
regarded as a static voltage/frequency scaling approach, be-
cause after setting the initial voltage and frequency it will
not change during run-time. The techniques have been proven
optimal when the voltage and frequency can be controlled both
uniformly and independently among processors. Based on RT-
SVFS, real-time dynamic voltage and frequency scaling (RT-
DVFS) was presented in order to accommodate to dynamic
environments [19].

While a lot of research has been done for homogeneous
multi-core platforms, comparatively less research has been
done for heterogeneous multi-core platforms. Moreover, parti-
tioning approach is only considered in the literatures [3], [4],

[5], [6]. Yu and Prasanna [3] addressed the problem of assign-
ing periodic tasks on heterogeneous platforms with the setting
of the frequency level per task. They formulated the problem
as an Integer Linear Programming (ILP) to minimize the
energy consumption and provided a linear relaxation heuristic
algorithm. The other related works [4], [5], [6] studies energy-
efficient task partitioning on platforms with a static frequency
for each processor. Chen and Thiele [4] provided a fully
polynomial-time approximation scheme based on dynamic
programming for a case of two-type heterogeneous processors.
This work was later extended in [5] for n-type heterogeneous
processors. Chen et al. [6] formulated the energy-efficient task
partitioning problem as an ILP and provided polynomial-time
algorithms by applying existing bin-packing algorithms based
on a relaxation of some assumptions. The most of related
work for heterogeneous multi-core platforms considers task
partitioning approach where task migration is not allowed, and
it is proved to be NP-hard in a strong sense. Thus, they focused
on developing efficient heuristic algorithms with approxima-
tion bounds. This paper focuses on energy/feasibility optimal
global scheduling on two-type heterogeneous platforms. We
develop an optimal task workload allocation algorithm from
both the feasibility and energy consumption points of view and
establish optimal scheduling rules for two-type heterogeneous
multi-core platforms.

Real-time scheduling on heterogeneous multi-core plat-
forms. From the feasibility point of view, the scheduling
problem on heterogeneous multiprocessors has been studied
in the past [22], [23], [24], [13]. Baruah [22] considered the
task partitioning problem which determines whether the tasks
can be partitioned among processors in such a manner that all
timing constraints are met. Andersson et al. [23] proposed a
task assignment heuristic algorithm for the two-type platforms.
Raravi et al. [24] considered an intra-migrative scheduling
problem, which statically assigns each task to a core type and
allows task migration among cores of the same core type, and
proposed a linearithmic task assignment algorithm. For global
scheduling, Baruah [13] provided an exact feasibility analysis.

VIII. CONCLUSION

This paper is motivated by an attempt to see how good
global scheduling, beyond partitioned scheduling, can be for
big.LITTLE platforms (one of the cutting-edge heterogeneous
multi-core architectures) in the perspective of both core uti-
lization and energy saving. To this end, we develop an
energy/feasibility-optimal global scheduling framework which
determines big.LITTLE platform configurations and global
job schedules, so that the energy consumption is minimized
without compromising feasibility. Moreover, we suggest DP-
Fair-Hetero as optimal scheduling rules for implicit-deadline
periodic tasks running on two-type heterogeneous multi-core
platforms. This work will be a basis for designing efficient
global schedulers for heterogeneous multi-core platforms.

One of the major concerns on global scheduling is migra-
tion overhead. Hence, a direction of our future work includes
incorporating migration overhead into our framework and
developing an efficient global scheduling algorithm targeting
for general heterogeneous multi-core platforms.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, vol. 43, pp. 35–44,
2011.

[2] ARM, “big.little technology: The future of mo-
bile,” 2013. [Online]. Available: http://www.arm.com/files/pdf/
big-LITTLE-Technology-the-Futue-of-Mobile.pdf

[3] Y. Yu and V. K. Prasanna, “Resource allocation for independent real-
time tasks in heterogeneous systems for energy minimization,” Journal
of Information Science and Engineering, vol. 19(3.

[4] J.-J. Chen and L. Thiele, “Energy-efficient task partition for periodic
real-time tasks on platforms with dual processing elements,” in Pro-
ceedings of the 14th IEEE International Conference on Parallel and
Distributed Systems (ICPADS 2008), 2008.

[5] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation
scheme for energy-efficient scheduling of real-time tasks in heteroge-
neous multiprocessor systems,” in Proceedings of the Conference and
Exhibition of Design, Automation, and Test in Europe (DATE 2009),
2009.

[6] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization
for periodic real-time tasks on heterogeneous processing units,” in
Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS 2009), 2009.

[7] G. Levin, F. Shelby, S. Caitlin, P. Ian, and B. Scott, “DP-Fair: A simple
model for understanding optimal multiprocessor scheduling,” in ECRTS,
2010.

[8] Hardkernel co. Ltd., “ODROID-XU+E specification,” 2014. [Online].
Available: http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu

[9] A. Carroll and G. Heiser, “Unifying DVFS and offlining in mobile
multicores,” in RTAS, 2014.

[10] Hardkernel co. Ltd., “ODROID-XU+E,” 2013. [Online]. Avail-
able: http://www.hardkernel.com/main/products/prdt-info.php?g-code=
G137463363079

[11] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,”
in Proceedings of IEEE Real-Time Systems Symposium, 2001.

[12] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2003), 2003.

[13] S. Baruah, “Feasibility analysis of preemptive real-time systems upon
heterogeneous multirpocessor platforms,” in RTSS, 2004.

[14] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate
progress: a notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[15] T. Baker, “An analysis of EDF schedulability on a multiprocessor,”
IEEE Transactions on Parallel Distributed Systems, vol. 16, no. 8, pp.
760–768, 2005.

[16] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (DVS) platforms,” in RTCSA, 2007.

[17] D. Li and J. Wu, Energy-aware Scheduling on Multiprocessor Plat-
forms. SpringerBriefs in Computer Science, 2013.

[18] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-
time scheduling on multiprocessors,” in ECRTS, 2008, pp. 13–22.

[19] K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki, “Dynamic voltage
and frequency scaling for optimal real-time scheduling on multipro-
cessors,” in Proceedings of the International Symposium on Industrial
Embedded Systems (SIES 2008), 2008.

[20] D.-S. Zhang, F.-Y. Chen, H.-H. Li, S.-Y. Jin, and D.-K. Guo, “An
energy-efficient scheduling algorithm for sporadic real-time tasks in
multiprocessor systems,” in Proceedings of the IEEE International
Conference on High Performance Computing and Communications
(HPCC 2011), 2011.

[21] G. A. Moreno and D. de Niz, “An optimal real-time voltage and
frequency scaling for uniform multiprocessors,” in RTCSA, 2012.

[22] S. Baruah, “Task partitioning upon heterogeneous multiprocessor plat-
forms,” in RTAS, 2004.

[23] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in RTSS, 2010.

[24] G. Raravi, B. Andersson, K. Bletsas, and V. Nelis, “Task assignment
algorithms for two-type heterogeneous multiprocessors,” in ECRTS,
2012.

APPENDIX A - PROOF OF LEMMA 1

We calculate the minimum workload ratios induced by
constraint C2.
In the case of uL,maxi > 1 and uB,maxi > 1, τ is not feasible.
In the case of uL,maxi > 1 and uB,maxi ≤ 1,
xLi · u

L,max
i + xBi · u

B,max
i ≤ 1

⇐⇒ (1− xBi) · uL,maxi + xBi · u
B,max
i ≤ 1 (∵ C1)

⇐⇒ uL,max
i −1

uL,max
i −uB,max

i

≤ xBi
(uL,maxi > 1, uB,maxi ≤ 1→ 0 <

uL,max
i −1

uL,max
i −uB,max

i

)

∴ loBi =
uL,max
i −1

uL,max
i −uB,max

i

Additionally, uB,maxi ≤ 1→ 0 ≤ xLi
(∵ τi can integrally be executed on the LITTLE cluster).
In the case of uL,maxi ≤ 1 and uB,maxi > 1,
similarly, uB,max

i −1
uB,max
i −uL,max

i

≤ xLi , 0 ≤ xBi
Otherwise, i.e. uL,maxi ≤ 1 and uB,maxi ≤ 1,
τi can integrally be executed on either the big or LITTLE
clusters. Therefore, 0 ≤ xLi , xBi

APPENDIX B - PROOF OF THEOREM 2

We prove this theorem by contradiction. Suppose a job of
task τi misses its deadline when it is scheduled by DP-Fair-
Hetero. Then, there must exist the time slice σk and the earliest
time t′ in σk such that the job of τi has task-level local laxity of
-1 at t′ (i.e., Li(t′) < 0, tk−1 ≤ t′ < tk). The job became zero
laxity at t′ − 1, so it should be executed at t′ − 1 according
to R2. However, it fails to execute at t′ − 1. We denote by
τ ′ = {τj |Lj(t′ − 1) = 0} the task set of which a job has zero
laxity at t′ − 1.

We consider two cases: (A) |τ ′| > mB + mL, (B) |τ ′| ≤
mB +mL.

Case A: If |τ ′| > mB + mL, then the sum of remaining
execution on both the big and LITTLE clusters in [t′ − 1, tk)
is larger than (mB +mL) · (tk − (t′− 1)) since the remaining
execution of a zero laxity job at t′−1 is tk−(t′−1). Moreover,
all cores in the big and LITTLE clusters should be busy in
interval [tk−1, t

′−1). If there is an idle core at t′′ in [tk−1, t
′−

1), the only reason that a job of τj ∈ τ ′ cannot be executed
on the idle core is that the job is already executed on the other
core at t′′. It means |τ ′| ≤ mB +mL, and this contradicts the
assumption that |τ ′| > mB + mL. Therefore, the sum of the
total workload allocated on each cluster in [tk−1, t

′ − 1) and
[t′ − 1, tk) (i.e. [tk−1, tk)) is larger than the sum of the total
capacity of each cluster in [tk−1, tk), meaning that at least
either C3 or C4 are violated. This contradicts the assumption
that τ is feasible.

Case B: We consider the case that |τ ′| ≤ mB + mL. The
deadline miss job of τi was not executed at t′−1 even though
the job has zero laxity, which implies that there is no job to
execute except zero laxity jobs. Moreover, by assumption, the
number of zero laxity jobs executed at t′ − 1 should be less
than mB + mL. Therefore, if |τ ′| ≤ mB + mL, there must
exist at least one idle core at t′ − 1.

(Case B-1): In the case that task τi is a migrating task at
t′ − 1 (i.e., RBi (t′ − 1) > 0 and RLi (t′ − 1) > 0), a job of τi
should be executed on the idle core at t′ − 1. This contradicts
that the job of τi has task-level local laxity of -1 at t′.

(Case B-2): In the case that task τi is a partitioned task at
t′− 1 (i.e., either RLi (t′− 1) = 0 or RBi (t′− 1) = 0). Without
loss of generality, we assume RLi (t′ − 1) = 0.

If the big cluster has an idle core at t′ − 1, a job of task
τi should be executed at t′ − 1 by R2. It contradicts that the
job of τi has task-level local laxity of -1 at t′.

If the big cluster has no idle core at t′ − 1, there must be
more than mB partitioned zero laxity jobs on the big cluster at
t′−1 (If not, a job of τi should be executed at t′−1 by R2-1).
We define τ ′′ = {τj |Lj(t′−1) = 0∧RLj (t′−1) = 0}. The sum
of the remaining execution of all jobs of τj ∈ τ ′′ in [t′−1, tk)
should be larger than mB ·(tk−(t′−1)). Since LB(t′−1) < 0,
there must exist the latest time t′′ ∈ [tk−1, t

′ − 1) such that
LB(t′′) = 0 (if not, ∀t ∈ [tk−1, tk), LB(t) < 0 → τ violates
C3). Then, there must be at least one idle core at t′′ because
∀t > t′′, LB(t) < 0. The only reason that a job of τj ∈ τ ′′
cannot be executed on the idle core is that the job is already
executed on the other core at t′′. If such job of τj is a migrating
one at t′′, it must be executed on the big cluster by R1. If
such job of τj is a partitioned one at t′′, it is executed on
the big cluster. Thus, all jobs of tasks in τ ′′ are executed on
the big cluster, which implies |τ ′′| ≤ mB , and this contradicts
|τ ′′| > mB .

This also holds for the case that RBi (t′ − 1) = 0.

Therefore, for all cases, we show that if DP-Fair-Hetero
fails to schedule a task set, the task set should be not feasible.

